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Abstract

Computer vision is not only about recognizing visual signals, but also rea-

soning over perceived visual elements. This ability, termed visual reasoning,

is typically studied by multimodal tasks like visual question answering and

image captioning. Thanks to recent developments in multimodal vision-and-

language, we are closer to achieving visual reasoning than ever. However,

more efforts are still required, in order to build visual reasoning systems that

are robust, interpretable and generalizable.

In this dissertation, I present my efforts towards visual reasoning, through

both model diagnosis and enhancements. In the first part, I diagnose existing

visual question answering models, including the end-to-end models and com-

positional models, and show the advantage of the latter. In the second part, I

dive deeper into compositional models, proposing techniques for enhancing

them with improved performance on real-world images. In the third part, I

generalize visual reasoning onto a different task, image captioning, introduc-

ing a new setting of the task that requires strong reasoning to summarize and

compare groups of images. With this dissertation, I showcase the advantages

and disadvantages of compositional visual reasoning methods, which should

be pursued in conjunction with non-compositional end-to-end models.
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Chapter 1

Introduction

Computer vision is a research field involving a broad range of problems, which

requires low-level recognition including image segmentation, classification,

etc., and high-level intelligence that enables cognitive understanding of the

perceived visual signals. In this dissertation, I study visual reasoning, a high-

level intelligence that requires reasoning over the visual elements in an image,

which I believe is crucial for building machines that can understand and think

about the visual world like humans do.

To study visual reasoning, it is natural to leverage language, which contains

language

Leaves turn 
yellow in autumn.

vision It is 
autumn!

Figure 1.1: Language is a natural interface visual reasoning.
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rich semantics and logic, as an interface. As an example, in Fig. 1.1, the knowl-

edge ”leaves turn yellow in autumn“ enables the reasoning about seasons

over the image showing the yellow leaves. Understanding both modalities,

i.e., vision and language, is crucial for reasoning about the visual world. In

fact, multimodal understanding has been widely studied with various proxy

tasks. Given a image, to describe it with natural language is called image

captioning; to identify objects or regions specified by a language query is

called referring expression understanding; to answer specific questions about

it is called Visual Question Answering (VQA). In this dissertation, I focus on

two tasks: visual question answering, which serves as a discriminative probe

of the models’ reasoning ability, and image captioning, which is a generative

task that requires reasoning with free-form language.

There has been two lines of approaches for visual reasoning. One is the

black-box neural networks trained end-to-end for solving the tasks directly,

which performs well on standard benchmarks but is in short of interpretability

and robustness. The other approach, the compositional method, favors modu-

larity, interpretability, and data efficiency, but requires specifically-designed

modules, thus is hard to generalize and achieve competitive performance on

real-world data. In this dissertation, I first compare the two types of meth-

ods by systematically benchmarking and diagnosing their advantages and

disadvantages. Subsequently, I dive deeper into the compositional reasoning

methods, proposing techniques for enhancing their performance on real-world

data.
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Putting everything together, I study visual reasoning, represented in var-

ious tasks, from the perspective of diagnosis and model enhancement. I

showcase the challenges in visual reasoning, and present the advantages

and disadvantages of compositional and non-compositional methods, and

suggest that compositional models, characterized by strong robustness and

interpretability, be pursued in conjunction with non-compositional end-to-end

models.

Next, I will introduce the outline of this thesis and illustrate how each part

fits in the story.

1.1 Diagnosing Visual Question Answering

In Part I, I focus on the task of visual question answering, which is a discrimi-

native task that queries the model to answer specific questions. I introduce

methods for model diagnosis, enabling better understanding of existing mod-

els. Understanding the models is important for reliable applications, but

this is challenging due to the black-box nature of neural networks. I do the

diagnosis with two strategies: feature swapping and synthetic data. Using

the two method, I aim to better understand, and systematically benchmark

the robustness of current models, including how they perform on images

with swapped objects, how they generalize to testing images that differs from

training ones, how they answer various types of questions, like questions

requiring 3D understanding of the images.

In Chapter 2, I propose to diagnose models by feature swapping, which
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is a strategy to perturb the input features of VQA models. Using this strat-

egy, I discover that current VQA models over-rely on visual context, i.e., the

irrelevant visual elements in the image, to answer the questions, thus are not

robust to changes in the features of visual context. By swapping the features

of the irrelevant visual elements, the model’s predictions can be dramatically

changed, leading to a significant performance drop. In additional to revealing

the model’s vulnerability in robustness, in this chapter, I also show that this

feature swapping strategy can be applied in training time to improve the

model robustness.

In Chapter 3, I introduce a synthetic benchmark, named Super-CLEVR, to

benchmark the robustness of VQA models towards domain shifts. Domain

shift, i.e., the testing domain shifted from the training domain, is an important

challenge for current models, but can hardly be studied due to the difficulty to

control the distribution of real-world datasets. Alternatively, in this synthetic

world, I control the distribution over a broad range of nuanced factors, includ-

ing visual complexity, question redundancy, concept distribution, and concept

compositionality. Different types of models, including the end-to-end models

and the compositional models, are studied over these factors. The analysis

shows that one compositional model, with probability injected, shows the best

robustness.

While image is a 2D capture of the world, it is important that the world

is fundamentally in 3D. Chapter 4 expands the Super-CLEVR benchmark

with 3D-aware questions, which requires 3D understanding of the images
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to answer, such as the 3D poses of objects, occlusion relationships, and part-

whole object structures. Various models are evaluated on Super-CLEVR-3D to

access their ability for answering questions about the 3D world from the 2D

images. Moreover, this benchmark motivates a neural symbolic method, for

3D VQA, which will be described in Chapter 4 as well.

1.2 Visual Question Answering with Compositional
Models

Motivated by the diagnosis findings in Part I showing merits of composi-

tional methods, in Part II, I dive deeper into the compositional models for

visual question answering. I introduce several techniques to improve existing

compositional models for stronger performance on real-world data.

In Chapter 5, I generalize the synthetically successful compositional mod-

els onto real-world images. Existing compositional models performs great on

toy synthetic world containing clean images with simple objects, but do not

generalize to real-world images, which are far more complex and contains

countless visual concepts, e.g. objects, attributes, and relationships. With anal-

ysis, I discover two limiting factors: the long-tail distribution of real-world

visual concepts, and the unequal importance of reasoning steps in real ques-

tions. Two simple yet effective techniques, i.e., calibrating the concepts and

operations, are proposed to address the two limiting factors respectively. With

these techniques, the model performance is greatly enhanced on real-world

benchmark.

Recently, empowered by large language models (LLMs), compositional
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reasoning has been brought to a new stage by using LLMs as reasoning plan-

ners. However, the method still suffer from errors sourced from either LLM

reasoning planner, or from the visual modules that the execute the reasoning

program. In Chapter 6, I introduce a “plug-and-play” method to correct the

reasoning results through introspective verification. Specifically, a mixture-of-

expert of verification modules are devised to validate predictions after each

reasoning step, subsequently calibrating the visual module predictions and re-

fining the reasoning trace planned by LLMs, leading to improved performance

over a wide range of visual reasoning tasks.

Visual representations provides the foundation for compositional reason-

ing. In Chapter 7, I conduct a detailed analysis of the visual representations in

pretrained large models. I compare the visual features in pretrained vision

models, and multi-modal (vision-and-language) models, by probing the fea-

tures on a broad spectrum of visual tasks. The probing tasks include label

prediction tasks like object name and attribute prediction, which requires se-

mantic understanding of the visual elements, and dense prediction tasks like

detection and segmentation, which requires localized understanding of the

image. The probing results suggest that multimodal representations encode

stronger semantics information, while vision-only representations are stronger

in localization. The probing results serve as a preliminary study to guide the

usage of foundation models for visual tasks.
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1.3 Image Captioning with Contrastive Reasoning

Part III moves on to the generative image captioning task. I introduce a new

setting of the image captioning task that requires reasoning. While traditional

image captioning generates text descriptions for a single image, in Chapter 8,

I introduce a much more challenging setting: describe a group of images, in

the contrast of more context images. The challenges of new setting come from

reasoning for comparison of the similarities and differences between images:

the models is required to describe the similarity of a group of images, and

contrast them with the context images to summarize the differences. This

task can be potentially grounded to real-world applications, like suggesting

personalized search queries for image search engines. I created benchmarks

for this new setting based on datasets of traditional image captioning, and

proposed models based on attention and feature contrasting to solve the task.
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Chapter 2

SwapMix: Diagnosing and
Regularizing the Over-Reliance on
Visual Context in Visual Question
Answering

While VQA has progressed rapidly, previous works raise concerns about ro-

bustness of current VQA models. In this chapter, we study the robustness of

VQA models from a novel perspective: visual context. We suggest that the

models over-rely on the visual context, i.e., irrelevant objects in the image,

to make predictions. To diagnose the models’ reliance on visual context and

measure their robustness, we propose a simple yet effective perturbation tech-

nique, SwapMix. SwapMix perturbs the visual context by swapping features

of irrelevant context objects with features from other objects in the dataset.

Using SwapMix we are able to change answers to more than 45% of the ques-

tions for a representative VQA model. Additionally, we train the models with

perfect sight and find that the context over-reliance highly depends on the

quality of visual representations. In addition to diagnosing, SwapMix can

9



also be applied as a data augmentation strategy during training in order to

regularize the context over-reliance. By swapping the context object features,

the model reliance on context can be suppressed effectively. Two representa-

tive VQA models are studied using SwapMix: a co-attention model MCAN

and a large-scale pretrained model LXMERT. Our experiments on the popular

GQA dataset show the effectiveness of SwapMix for both diagnosing model

robustness, and regularizing the over-reliance on visual context. The code for

our method is available at https://github.com/vipulgupta1011/swapmix

2.1 Introduction

In recent years, VQA performance is greatly boosted by different techniques

including intra- and inter-modality attentions [1, 3], large scale multi-modal

pretraining [2, 4, 5], etc. However, previous works study the robustness of

VQA models and show that the models may exploit language prior [6, 7, 8],

statistical bias [9, 10] or dataset shortcuts [11, 12] to answer questions.

While previous works studied VQA robustness from the perspective of

language context, in this work, we study the robustness of VQA models from

a different view: visual context. The visual context refers to the background

in the image or the irrelevant objects that are not needed during the reasoning

process to answer the question. For example, in Figure 2.1, the tennis ball is

irrelevant for the question "What color is the women’s dress", so we say it is

a context object. Ideally, a model with real perception and reasoning ability

should be robust to the irrelevant context. However, in our work, we find that

VQA models are vulnerable to context changes, which suggests the models’
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over-reliance on the irrelevant context in the image.

Tennis Ball → Soccer Ball

Question: What color is the woman’s dress?
Ground-truth answer: Orange.
Model prediction: Orange. Model prediction: White.

Context Perturbation

Figure 2.1: VQA models over-rely on visual context. By swapping features of irrele-
vant context objects, we can perturb the model prediction. Here the tennis ball (in
yellow box) is an irrelevant context object for the question. Changing feature of the
tennis ball to feature of soccer ball results in change in model prediction.

To study the role of visual context, we propose a simple perturbation

strategy named SwapMix, which perturbs the visual context by swapping

features of context object with features from another object in the dataset.

We first identify the visual features corresponding to irrelevant objects in the

image, then randomly swap them with feature vectors of another similar object

from the dataset. For example, in Figure 2.1, the tennis ball is a context object

for the given question, so we swap tennis ball feature vector with a feature

vector of soccer ball. The swapping confuses the model to mis-recognize the

color of the dress. In the swapping process, we carefully control the swapped

objects to ensure that the new object is compatible to the scene (e.g., we don’t

want to change the ball into a car).

Surprisingly, by perturbing the irrelevant context, more than 45% of the
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correct answers get changed. This reveals that VQA models highly rely on the

context in the image, thus are vulnerable to context perturbations. The model

may utilize shortcut correlations in the visual context to make predictions.

We diagnose two representative VQA models: MCAN [1] as representative

for attention-based models, and LXMERT [2] as representative for large-scale

pretrained models. Our experiments show that LXMERT is much more robust

to context perturbations, which indicates that large-scale pretraining may

increase model robustness.

We further find that the context over-reliance highly depends on the quality

of visual representations: a perfect sighted model relies much less on context.

We achieve this by replacing the visual representations 1 with the ground-truth

object and attribute encoding, which can be viewed as gold visual represen-

tation that provides the model the perfect sight. By studying this perfectly

sighted model, we can exclude the influence of imperfect visual perception,

thus purely focus on the reliance on relevant objects in the reasoning process.

Our results shows that by providing VQA models with the perfect visual

encoding, the answer changes are greatly reduced from 45.0% to 16.4% (for

MCAN model). This suggests that models trained with perfect visual repre-

sentations are more robust and that the context over-reliance largely comes

from the imperfection of visual perception features.

In addition to diagnosing context over-reliance, SwapMix can also be used

as a data augmentation technique during training. In training, we randomly

swap a part of the context features with other object features from the dataset.

1Majority of VQA models use object features extracted by pretrained object detectors as
visual representation.
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This forces the model to focus more on relevant objects in the image and less

on irrelevant context. Our empirical results show that by applying SwapMix

in training, the model robustness improves by more than 40% and effective

accuracy improves by more than 5% on GQA dataset [13].

Our main contributions in this paper are three-fold. First, we are the first to

study VQA robustness from the perspective of visual context. With our simple

context perturbation strategy named SwapMix, we benchmark robustness

of two representative VQA models and find their over-reliance on visual

context. Second, we find that a perfect sighted model relies much less on

visual context. We provide models with perfect visual encodings and observe

the improvement in model robustness. Third, we define 2 metrics, context

reliance and effective accuracy and shows improvement by using SwapMix as

data augmentation technique.

2.2 Related Works

Visual Question Answering. The most common approach for VQA is to

first extract visual features using convolution neural networks and question

features using LSTM[14], then fuse them together to make answer predictions

[15]. Multiple works have shown the effectiveness of attention in VQA [16,

17, 18, 19, 20, 21, 22]. BAN[23] proposes bilinear attention that utilizes vision

and language information. MCAN [1] is a co-attention model which uses

self-attention and guided-attention units to model the intra-modal and inter-

modal interactions between visual and question input. OSCAR [5] uses object

tags in images as anchors to improve alignment between modalities. LXMERT
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[2] is a large-scale Transformer [24] model that consists of three encoders: an

object relationship encoder, a language encoder, and a cross-modality encoder.

In concurrent work, [25] proposes feature swapping for domain adaptation

from synthetic to real data.

Biases and Robustness in VQA. Despite the prosperity in the development

of VQA, multiple previous works show bias in VQA models. [9] points

out the generalization incapacity of VQA models. [26] shows bias reliance

of VQA models. [27] discover and enumerate explicitly biases learned by

the model. Many work show that the models exploit language prior [6, 7,

8], statistical bias [9, 10] or dataset shortcuts [11, 12] to answer questions.

There are many approaches to mitigate the bias in models. [6] introduces

a method that reorganizes the VQA v2 dataset. Some works use question-

only model: [28] introduces training as an adversarial game between the

base model and a question-only adversary, while [29] adds a question-only

branch to do joint training with the base model, and omits it at test time. CSS

[30] generates counterfactual samples during training, which improves the

visual-explainable ability. [31, 32] leverage the important visual information by

humans to focus on selected regions during training. [33] designed a two-stage

model, the first stage trains only on biases, and the second stage focuses on the

other patterns of the dataset. In addition to decreasing modal biases, there are

lot of work on measuring biases more accurately and efficiently. MUTANT [34]

and GQA-OOD [11] use out-of-distribution (OOD) generalization. Early work

like [35] provided a soft measure score based on a lexical set. [36] measures

the performance of the models based on both the baseline questions and the
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CLOSURE test, indicating that the gap between these two measurements is

the behavior of generalization. [37] measures bias in VQA by finding counter-

examples from validation set with their proposed rules and use the mined

counter-examples to evaluate model. Different from the above previous works,

our work is the first to study the reliance on visual context of VQA models by

generating new examples.

Context in computer vision. Contextual information is important for

computer vision. For object recognition, early work by [38] introduced a

context-based model using place categorization to simplify object recognition,

[39] studied how context influences object recognition, and recent work by

[40] modified a global context model to enhance performance. Moreover,

[41] demonstrate that object detection models rely too much on contextual

information when objects are occluded, and resolve this using a compositional

generative model [42, 43] that separates the object and context in the repre-

sentation. For scene graphs, [44, 45] introduce a hierarchical context model to

generate a scene graph, and [46] augment the node features of scene graphs

with contextual information. For segmentation, [47] presents multi-scale con-

textual representation with context modules, which leverage the global image

representations to estimate local affinity of sub-regions, and [48] introduces a

switchable context network to improve the performance of semantic segmen-

tation of RGB-D images. In the field of VQA, [49] add a visual context based

attention that takes into account the previously attended visual content.
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feature extraction

Question: 
What color is the 
statue?

SwapMix: Swap the context object feature with other object features

object-based features

features of similar objects

(a) ! swaps based on class names (b) ! swaps based on attributes

VQA Model

car motorcycle white bus blue bus

!… …!

Original Answer: Gray.

… …

Figure 2.2: Overview of our method. Given an image and a question, we first
find context object (e.g. red bus in the yellow box) using the reasoning steps of the
question. Then we swap the context object feature with other similar object features
in the dataset. We perform k swaps based on (a) object class names and (b) object
attributes each. The model’s reliance on context can be evaluated with the percentage
of answer changes when context gets perturbed.

2.3 Method

VQA models are not robust to minor perturbations. In this section, we

provide a simple perturbation technique that measures the reliance of VQA

models on visual context, i.e. irrelevant objects image. We swap features corre-

sponding to irrelevant objects in the image with other objects from the dataset.

In an ideal scenario, changing the context objects in the image should not

affect the model’s prediction, while in our experiments, we found that VQA

models rely heavily on the context and are not robust to small perturbations.
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We name our method, SwapMix, which performs perturbations on visual

context to diagnose the robustness of the model. SwapMix can also be used

as a data augmentation technique during training to improve the robustness

and effective accuracy of the model. We first define what visual context is,

then introduce VQA models with perfect sight which leads to interesting

diagnosing findings, next describe how we perform SwapMix, and finally talk

about how to apply SwapMix as a training strategy.

2.3.1 Definition of Visual Context

Here we clarify the definition of visual context and provide formulation for

the problem.

f = Model(V, Q)

Here, V represents the visual representation and Q represents the question

input. A widely-used visual representation is the object-based features [50]

extracted by pretrained object detector Faster RCNN [51]. In this case, V ∈
Rn×d is a set of object features, where n is the number of objects in the image

and d is the dimension of the feature vector for each object.

Among the n objects in the image, there are some irrelevant objects that

are not needed in the reasoning process of question answering. For a fully

robust model, changing the context, C should not change model’s prediction

as shown in Figure 2.1. We refer to those irrelevant objects as visual context

and denote visual context by C. C ∈ Rm×d is a subset of V. It contains feature

vectors corresponding to m irrelevant objects. Each row of the context C,

denoted as ci, is a feature vector corresponding to an irrelevant object.
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The context objects are identified using the question reasoning steps. For

example, in order to answer the question “What color is the statue in front of

the trees", we need to first find the tree, then find the statue in front of the tree

and finally query its color. The GQA dataset [13] provides the ground-truth

reasoning steps for each question, as well as the selected objects after each

step. We use those reasoning steps to filter out all the relevant and irrelevant

objects for the question. Then Intersection-over-Union (IoU) ratio is used to

match the predicted objects with the ground-truth ones.

2.3.2 VQA Model with Perfect Sight

We conjecture that the model robustness is related to the quality of visual

perception. The majority of the current VQA models use the object features

described above as visual input to the model. The features are extracted by a

pretrained off-the-shelf object detector which is not updated in VQA training.

These pre-extracted features may contain a large amount of noise and miss

out on important information that is required to answer the question. In

this case, the model may be forced to learn unreasonable data correlations

from irrelevant context to predict the answers correctly, which reduces the

robustness of the model.

Therefore, to study the influence of visual perception imperfection, we

train a model with perfect sight and compare its behavior with model trained

with commonly used detected features. The models with perfect sight are

trained using the scene graph annotations in GQA dataset. We replace the

object features with the encoding of ground-truth object annotations. More
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specifically, for each object, we encode its annotated class label and attributes

into one-hot encodings, which are then encoded using GloVe [52] embed-

dings and finally converted to inner dimension d with a FC layer. The object

bounding box coordinates are also converted to same dimension using a FC

layer. The final representation of an object i is the average of three parts:

ci = Avg(oi, ai, bi). oi, ai, bi ∈ R1×d are encodings for object class label,

attributes and bounding box coordinates respectively.

2.3.3 SwapMix

Now we introduce our proposed context perturbation strategy: SwapMix. The

overall idea is shown in Figure 2.2. First, we describe the broad idea about the

method and then we go into details on how we select candidates for context

swapping, how we perform context swapping in terms of object class labels

and attributes, and finally, how we apply SwapMix as a training strategy to

improve robustness of the models.

After discovering the context objects as described in Section 2.3.1, we swap

their features with other object features from the dataset. For each context

object, we perform two types of context swapping based on (a) class label

and (b) attributes. In (a) we swap the object feature with the feature of an

object from a different class. For example, we change a bus into a car. In (b)

we swap the object feature with feature of an object from same class but with

different attributes. For example, we change a red bus with yellow bus. For both

(a) and (b), we perform k feature swaps per context object, therefore altogether

we have 2k swaps for each context object. We perform context swapping
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iteratively for each irrelevant object in the image and measure the percentage

of answer changes.

We control the swapping process to make sure that the new object is

compatible with the image. For example, we may want to change a bus into a

car, but we don’t want to change it into a computer because a computer parking

on the roadside is unnatural. swapped feature always corresponding to an

object from the dataset. The swapped feature resembles a real object and thus

this perturbation is equivalent to replacing the irrelevant object with another

object in the image. Next, we will provide more details on how we choose

candidate features to swap with.

To better describe our feature swapping strategy, we denote each context

object feature (each row of context C) as ci(o; a1, a2, . . .). Here o is the class

label for the object i, and a1, a2, . . . are its attributes. Each object belongs to

a unique object class while it can have an arbitrary number of attributes.

For example in Figure 2.2, feature corresponding to the large red bus can be

written as c(bus; red, large).

2.3.3.1 Swapping the context class.

We swap the object feature with the feature of an object from a different class.

For example in Figure 2.2 we swap the bus to car, motorcycle, etc. This type of

feature swapping is similar to putting an object of a different class in place

of the irrelevant context object in the image. The context swapping helps us

understand the dependency of the VQA model on irrelevant objects in the

visual input.
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To ensure that the swapped class is in the similar domain as object of

interest, we only swap the object into similar classes. To achieve this, for each

context object, we find the k nearest classes to its class name. More specifically,

we compute cosine similarities between GloVe embeddings of class names

and pick the top k class labels. Additionally, we set a threshold (0.5) to filter

out the classes with small similarities 2. In this way, we get the candidates for

swapping each context object and ensure the selected matching classes are in

the similar domain. For example, for the class car, its top-5 similar classes are:

truck, motorcycle, vehicle, taxi, bus.

For each context object ci(o; a1, a2, . . .) with class o, we select the k nearest

class labels to o for swapping as described above. For each of the k classes, we

randomly pick one object from the dataset that belongs to that class. This re-

sults in k candidate features for swapping: ĉj
i(oj; aj

1, aj
2, . . .) where j = {1, 2....k}.

Then by swapping ci to each of the ĉj
i , we get k perturbations for each irrelevant

context object.

To perturb the perfectly sighted models trained with the encoding of

ground truth object class and attributes, a straight-forward way is to simply

modify the one-hot encoding for the class label. However, this might cause

the object names to be incompatible with attributes, such as pink elephant or

green basketball. Therefore, to ensure that the swapped context corresponds to

a real object, we pick a random object of the swapped class from the dataset

and use its attributes to generate one-hot encodings for the swapped object

2For cases where the number of matching classes with threshold 0.5 are less than k, we
select random classes from the datasets to make number of swaps exactly k. We also tried not
padding with random classes. The experimental results are similar for the two settings.
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attributes.

2.3.3.2 Swapping the context attributes.

To further study the context reliance, we change the object attributes while

keeping the object class unchanged. The object feature is swapped with the

feature of an object from the same class but with different attributes. For

example in Figure 2.2, the red bus can be changed to orange bus, yellow bus, etc.

Compared with object class swapping, attribute swapping can be viewed as

a more controlled perturbation that helps reveal the models’ reliance on the

context in more detail.

For each context object ci(o; a1, a2, . . .), we swap it with k objects of same

class label but different attributes. To get the k swapping candidates, we

randomly select k objects from the list of objects belonging to same class with

different attributes from the dataset 3. This results in ĉj
i(o; aj

1, aj
2, . . .) where

j = {k + 1, k + 2, . . . , 2k}. The object o remains the same across all context

swaps.

To perturb the model with perfect sight, we just change the one-hot encod-

ings for the attributes. We pick top k attributes which are similar to attribute

of interest using GloVe similarity. For example, the attribute black can be

swapped with: blue, green, red, purple, yellow.

Algorithm. Let cj ∈ R1×d be the context corresponding to jth irrelevant

object. The aim is to swap cj with context cp(op; ap
1 , ap

2 , ...) belonging to an

object p from the dataset. We define a matrix for swapping, S ∈ Rm×d, where

3If the list of objects belonging to same class is less than k, let’s say k′, we perform only k′

feature swapping for that object.
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each row of S is equal to cp. We perform feature swapping to convert C to Cp

with the following operation :

Cp = C ⊙ P + S ⊙ Pc

P ∈ {0, 1}m×d is the perturbation matrix and ⊙ is Hadamard product [53],

also known as element wise matrix multiplication. All the rows of P are 1’s

except jth row corresponding to cj. Pc is complementary matrix of P, Pc = J

- P, where J is the matrix with each entry being 1. Thus, all entries of Pc are

0’s except for jth row. Effectively, we modify the context C to Cp by changing

context of jth row, from cj to cp.

Summary. For each context object, we get k swaps for its class labels and

another k swaps for attributes. Thus 2k context swaps are performed for

each irrelevant object. To generate one perturbation for an image, we only

perturb one context object at a time. Given m context objects in the image, we

perform m ∗ 2k perturbations. This is detailed testing on the model to check if

it depends on context for predictions. The results of these m ∗ 2k perturbations

are used to measure the robustness of the model.

2.3.4 SwapMix as a training strategy.

We can further use SwapMix to improve the robustness of the model. We use

SwapMix during training to augment the training images. The model sees a

new version of the image at every epoch based on context swapping. Using

SwapMix with training, we force the model to pay less attention to context, C,

and focus on relevant objects in the image to answer the questions.

23



During training, we swap the feature vectors belonging to context with

other feature vectors from the dataset. We identify the context and perform

context swapping based on (a) class label and (b) attributes in the same way

as explained in the above sections. We perform context swapping on some

irrelevant objects. For every irrelevant object, we decide to swap a feature

with a probability of p = 0.5. If selected for context swapping, we decide if we

have to perform context swapping based on the class label with a probability

of p = 0.5, otherwise, we perform context swapping based on attributes.

SwapMix training can be performed on both models trained with Faster-

RCNN features and model with perfect sight. We add a new function in the

data loading part of training, which changes the context in the image. As

we do context swapping for every image during data loading, the training

time increases by a factor of 1.4 times. In our analysis, we show that both the

robustness of the model and the effective accuracy increases using SwapMix

on both FasterRCNN and Perfect Sight embeddings.

MCAN LXMERT

Acc. Context Effective Acc. Context Effective
Reliance Acc. Reliance Acc.

Faster RCNN 70.55 45.05 38.77 83.78 4 10.10 75.32
Perfect Sight 90.34 16.40 75.53 91.58 18.85 74.31
Faster RCNN + SwapMix 61.04 26.94 44.61 83.72 7.31 77.60
Perfect Sight + SwapMix 88.10 11.65 77.83 91.45 17.34 75.59

Table 2.1: Results for diagnosing the context reliance for MCAN [1] and LXMERT [2]
models. We study models trained with both FasterRCNN features and perfect sight
embeddings. Here Context Reliance is the percentage of correctly-answered questions
that are successfully perturbed by SwapMix; Effective Acc. is the context-robust
accuracy.
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2.4 Experiment

2.4.1 Dataset and Experiment Setup

Dataset. Our experiments are based on the GQA dataset [13]. GQA train

split contains 72140 images with 943k questions and val split contains 10243

images with 132k questions. The dataset provides annotated scene graphs for

each image and ground-truth reasoning steps for each question. We leverage

the reasoning steps to identify visual context and leverage the scene graph

annotation to train models with perfect sight. We train the models on GQA

train set and test them on GQA val test. GQA also has a test-dev split and

a test split, which are not used in our work because they do not have scene

graph and reasoning step annotation.

Models. Among the many different VQA models, in this work, we focus

on two representative models: MCAN [1] and LXMERT [2]. MCAN is a

representative of attention-based models, which contains self-attention and

guided-attention units to model the intra-modal and inter-modal interactions

between visual and question input. LXMERT is a representative of large-scale

pretrained models which can be then finetuned to solve a set of downstream

tasks.

Implementation Details. We use the official released code for both MCAN

and LXMERT models. We finetune both MCAN and LXMERT pre-trained

4We note that LXMERT finetuned with Faster RCNN features has higher accuracy and
shows high robustness towards SwapMix perturbation. This is because we test both the
models on GQA val split and LXMERT was pretrained with five large vision-language
datasets where it has seen images in GQA val set during pretraining. This is reported in the
codebase. Therefore the LXMERT results with Faster RCNN features needs to be viewed with
cautious.
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models using FasterRCNN features on the GQA train set using the default

hyperparameters as described by respective authors. For training models with

perfect sight, we get ground-truth object names and attributes from scene

graph annotation in GQA dataset. MCAN with perfect sight takes a total of

50 epochs to converge and LXMERT model takes 6 epochs. For LXMERT, we

use the object features provided by its authors in the official codebase. For

MCAN, we used the object features released with GQA dataset.

Evaluation metrics. We introduce 2 new metrics to evaluate the model

robustness, context reliance and effective accuracy. As explained in Section 2.3.3,

we apply 2mk perturbations for each question where m is the number of irrele-

vant objects in the image and 2k is the number of feature swaps per irrelevant

object. We consider a question relying on context if its answer changes for

any for the 2mk perturbations. Based on this definition, context reliance is the

percentage of context-relying questions that are originally answered correctly.

Effective Accuracy is the percentage of questions that are consistently predicted

correctly and survive all 2mk SwapMix perturbations. Mathematically, it can

be written as effective Acc = ∑N
i qi/N, where N is the total number of questions

in the dataset and qi is defined as:

qi =

⎧⎪⎨⎪⎩
0, if gt ̸= Model(V j, Q) for any perturbation j

1, otherwise.
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MCAN LXMERT
Class Rel. Attr Rel. Class Rel. Attr Rel.

k=5

Faster RCNN 32.52 28.41 7.29 7.61
Faster RCNN + SwapMix 18.19 17.10 5.78 5.94
Perfect Sight 11.11 3.16 14.57 1.34
Perfect Sight + SwapMix 7.64 2.36 12.89 1.32

k=10

Faster RCNN 39.40 34.47 8.18 8.81
Faster RCNN + SwapMix 22.18 20.91 6.27 6.58
Perfect Sight 15.52 3.71 18.82 1.35
Perfect Sight + SwapMix 10.89 2.72 17.28 1.36

Table 2.2: Detailed analysis of reliance on context. Here we measure the reliance
on (a) class names and (b) attributes of irrelevant objects on model prediction. We
provide analysis on k perturbations on context for each irrelevant object.

2.4.2 SwapMix Perturbation Results

We finetune the MCAN model and LXMERT model on GQA training split

with object features extracted by pretrained Faster RCNN. After finetuning,

MCAN reaches 70.55% accuracy and LXMERT reaches 83.78% accuracy on

GQA validation split. These results are comparable with ones reported by

original authors.

Then we perform SwapMix perturbation to extensively test models’ re-

liance on context. The evaluation results for both the MCAN model and

LXMERT model are shown in Table 2.1. For measuring robustness, context

reliance and the effective accuracy are reported. Surprisingly, 45% of MCAN

answers get changed after perturbation and the effective accuracy drops signif-

icantly from 70.55% to 38.77%. The significant drop suggests that the MCAN

model relies heavily on the context and is not robust to context swapping. On

the contrary, LXMERT is more robust. We conjecture this is because LXMERT
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is pretrained on a large amount of image-text pairs from five vision-and-

language datasets [2] and the large-scale pretraining equipped the model with

better robustness.

Next, we study VQA models with perfect sight. We train both models with

perfect sight using encodings of ground truth object names and attributes. As

shown in table 2.1, both models achieve more than 90% accuracy with perfect

sight. We observe a significant improvement in robustness of MCAN with

perfect sight: its context reliance drops by 28.7% compared with training on

Faster RCNN features (from 45.1% to 16.4%) and the effective accuracy im-

proves from 38.77% to 75.53%. This suggests that models trained with perfect

sight are more robust than its FasterRCNN counterparts when trained with

the same amount of data. It is also noticeable that the LXMERT performance

is in a similar range with MCAN, which suggests that LXMERT is no more

robust than MCAN without seeing more pretraining data in the same domain.

In Table 2.2, we provide more detailed results of perturbations on object

class and attribute separately. Interestingly, we observe that models with

perfect sight are highly robust to attribute perturbations: only 3.7% and 1.4%

of the correct answers get changed by attribute perturbation for MCAN and

LXMERT respectively. This suggests that given the ground-truth class name,

the model can distinguish the relevant and irrelevant objects well, thus are

robust to perturbation on the attributes of context objects.

To further support our claim of generalisation of SwapMix, we tested our

approach on OSCAR [5]. We see 26.3% of OSCAR answers relies on visual

context. The results are consistent with our initial results that transformer
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models are more robust than MCAN.

2.4.3 SwapMix Training Results

Using SwapMix as a training data augmentation strategy consistently im-

proves the robustness of both models in all settings. For both MCAN and

LXMERT, trained with both FasterRCNN features and perfect encodings,

SwapMix training reduces the models’ reliance on context and boosts the

effective accuracy.

As shown in Table 2.1 (marked as +SwapMix), SwapMix training signif-

icantly decreases the context reliance of MCAN by 40% (from 45% to 27%)

and increases its effective accuracy by 5.8% (row 3). The results are also con-

sistent for MCAN with perfect sight and LXMERT. Table 2.2 further shows

that SwapMix training improves robustness in both context class reliance and

attribute reliance. The results consistently show that SwapMix as a training

strategy decreases model reliance on context, encourages model robustness

and improves effective accuracy.

Interestingly, we notice that there is a trade-off between model robustness

and overall accuracy. While we see significant improvement in model robust-

ness, it is noticeable that the overall model accuracy drops to some extent.

For example, when applying SwapMix training to MCAN model with perfect

sight, its context reliance reduces by 4.7% and effective accuracy improves

by 2.3%, while the overall model accuracy drops by 2.2%. The model utilizes

biases and correlations in context to achieve high performance, thus when the

29



context reliance is reduced by SwapMix training, the effective accuracy im-

proves while the overall accuracy drops. Hereby we suggest that the effective

accuracy is a better description of the models’ true ability to understand the

task without relying on context bias.

2.4.4 Ablations and Analysis

Ablating the swapping number k. In Table 2.2, we additionally provide

ablation study results for the hyperparameter k, which is the perturbation

number. The results for k = 5 or k = 10 are shown in the table. We do k

perturbations on class names and attributes of context objects and report the

percentage of questions affected. The result shows that when we increase the

perturbations number of k from 5 to 10, the reported answer changes increase

accordingly for both models, which is expected. Whereas it is also notable that

the reliance increase is not significant, showing that most reliance on context

can be revealed with a relatively small number of perturbations. By default,

we use k=10 to benchmark reliance on the context of VQA models.

Random padding to k swaps. When doing object name perturbation, for

cases where number of compatible classes is less than k, we select random

classes from the dataset to pad the perturbation number to exactly k. To verify

that this random padding does not bring extra noise in the result, we compare

results with and without random padding. As shown in table 2.3, the effect of

random padding is negligible.

Examples for SwapMix Perturbation. In Figure 2.3, we show examples

for our proposed SwapMix perturbation. Example (a) is based on class name
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MCAN
Random w/o random

k=10 FRCNN 45.1 40.3
FRCNN + SwapMix 26.9 24.3

k=5 FRCNN 38.1 35.0
FRCNN + SwapMix 22.4 20.8

Table 2.3: Context reliance measured by SwapMix with and without random padding
to generate k perturbations. This table verifies that random padding does not lead to
significant difference.

swapping and example (b) is based on attribute swapping, both of which re-

sulted in the change of model prediction. In example (a), the boot is irrelevant

to the question about sweater color, while changing boots into snow boots re-

sults in a change in model prediction. In example (b), when we swap the blue

signboard in the background with a green signboard, the model prediction

on the short’s color changed to green as well. The examples are based on the

results of MCAN model with perfect sight. The examples intuitively show

that VQA models rely heavily on context and by perturbing irrelevant context

in the image, we can change model prediction.

Attention visualization for SwapMix training. Training using SwapMix

as data augmentation reduces the models’ reliance on context. In Figure 2.4,

we show the visualization of attention weights for models trained without

SwapMix and models trained using SwapMix as data augmentation. The

visualization is based on the LXMERT model with perfect sight. For the

given question, “Is the camera silver or tan", a model with vanilla training

pays more attention to irrelevant context objects such as the car, the tree,

etc., while model trained with SwapMix augmentation focuses highly on the
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Question: Is the sweater blue?
Swap: boot → snow boot
Answer change: No → Yes

Question: The shorts have what color?
Swap: signboard blue → green
Answer change:  Grey → Green

(a) Context object class swap (a) Context attribute swap

Figure 2.3: Examples for SwapMix perturbationson GQA val split. Blue boxes show
relevant objects and yellow boxes show context objects. In (a) we perform class
name perturbation and change boots to snow boots. In (b) we perform attribute
perturbation and change color of signboard from blue to green. Both these SwapMix
perturbations change model prediction.

relevant object, camera, and pays very little attention to other objects. The

visualization qualitatively shows that when applied as data augmentation

strategy, SwapMix effectively suppresses the model’s dependency on visual

context and forces the model to focus more on relevant objects.

2.5 Conclusion

In this work, we study the reliance of VQA models on context, i.e. irrelevant

objects in the image for prediction. We propose a simple yet effective pertur-

bation technique: SwapMix. SwapMix is effective in both diagnosing model

robustness on context reliance, and regularizing the context reliance of VQA

models thus making them more robust. Our experiments of two representa-

tive models on GQA show the effectiveness of SwapMix. Interestingly, we
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Question : Is the camera silver or tan?
Answer   : Tan

(a) Without SwapMix (b)  With SwapMix

Figure 2.4: Visualization of attention weights for models (a) without SwapMix train-
ing (b) with SwapMix training. SwapMix training effectively suppresses models’
reliance on visual context.

find that the robustness of VQA models highly depends on the quality of

visual perception and models with perfect sight are more robust to context

perturbation. Large-scale pretraining also helps improve model robustness.

We hope that our initial analysis on reliance on visual context can serve as a

starting point for future researchers to study VQA robustness and reliability.

Negative impact and limitations. Our work study the robustness of VQA

models and find that the models are vulnerable to context perturbations. The

proposed SwapMix perturbation strategy may be used maliciously to attack

VQA models. To overcome this potential negative impact, we suggest that

training with SwapMix can effectively regularize reliance on context and that

better visual representation may improve model robustness. The limitation of

our work is that we only study two representative models, using two types of

visual features on the GQA dataset.
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Chapter 3

Super-CLEVR: A Virtual
Benchmark to Diagnose Domain
Robustness in Visual Reasoning

VQA models often perform poorly on out-of-distribution data and struggle on

domain generalization. Due to the multi-modal nature of this task, multiple

factors of variation are intertwined, making generalization difficult to analyze.

This motivates us to introduce a virtual benchmark, Super-CLEVR, where

different factors in VQA domain shifts can be isolated in order that their effects

can be studied independently. Four factors are considered: visual complexity,

question redundancy, concept distribution and concept compositionality. With

controllably generated data, Super-CLEVR enables us to test VQA methods

in situations where the test data differs from the training data along each of

these axes. We study four existing methods, including two neural symbolic

methods NSCL[54] and NSVQA[55], and two non-symbolic methods FiLM

[56] and mDETR[57]; and our proposed method, probabilistic NSVQA (P-

NSVQA), which extends NSVQA with uncertainty reasoning. P-NSVQA
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outperforms other methods on three of the four domain shift factors. Our

results suggest that disentangling reasoning and perception, combined with

probabilistic uncertainty, form a strong VQA model that is more robust to

domain shifts. The dataset and code are released at https://github.com/

Lizw14/Super-CLEVR.

3.1 Introduction

Visual question answering is a challenging task that assesses the reasoning

ability of models to answer questions based on both visual and linguistic in-

puts. Current VQA methods are typically developed on standard benchmarks

like VQAv2 [58] or GQA [59], with the implicit assumption that testing data

comes from the same underlying distribution as training data. However, as

has been widely studied in computer vision [60, 61, 62], algorithms trained

on one domain often fail to generalize to other domains. Moreover, having

learned the distributional prior of training data, models often struggle on out-

of-distribution tests. This has been studied in VQA from the perspective of

domain transfer [63, 64, 65], dataset bias [66, 8, 37], counter-factual diagnosis

[7, 30], and out-of-distribution benchmarking [11].

The multi-modal nature of VQA gives rise to multiple intertwined factors

of variation, making domain shift an especially difficult problem to study.

For example, [63] suggests that VQA domain shifts are a combination of

differences in images, questions or answers; and [67] reveals a gap between

synthetic and real VQA datasets by differences in the over-specification of

questions and the underlying distribution of concepts. However, despite a
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Domain A Visual 
Complexity

Question
Redundancy

Concept
Distribution

Concept
Compositionality

“What color is the bus?”

easy middle hard

balanced long-tail

well-composed  correlated

- redundancy
standard

+ redundancy “What color is the large bus behind the cyan car?”

“What color is the large bus?”

unbalanced 

Super-CLEVR

Domain B

“What color is the bus?”

Figure 3.1: We decompose VQA domain shifts into four contributing factors: visual
complexity, question redundancy, concept distribution and concept compositionality.
The domain shifts along each factor can be independently studied with the proposed
Super-CLEVR dataset.

wealth of research on domain generalization in VQA [68, 69, 65, 64], there is

no systematic analysis of the contributing factors in domain shifts.

To this end, we introduce a virtual benchmark, Super-CLEVR, which en-

ables us to test VQA algorithms in situations where the test data differs from

the training data. We decompose the domain shift into a set of isolated con-

tributing factors, so that their effects can be diagnosed independently. We

study four factors: visual complexity, question redundancy, concept distri-

bution, and concept compositionality. These are illustrated in Fig. 3.1 and

described in Sec. 3.3.1. With controllable data generation using our Super-

CLEVR virtual benchmark, we are able to isolate the different factors in VQA

domain shifts so that their effects can be studied independently. Compared

with the original CLEVR dataset [70], Super-CLEVR contains more compli-

cated visual components and has better controllability over the domain shift
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factors. As shown in Fig. 8.1, the Super-CLEVR dataset contains images ren-

dered from 3D graphical vehicle models in the UDA-Part dataset [71], paired

with questions and answers automatically generated from templates. The ob-

jects and questions are sampled based on the specified underlying probability

distribution, which can be controlled to produce distribution shifts in different

factors.

With Super-CLEVR, we diagnose the domain robustness of current VQA

models. Four representative models are studied: for the classic two-stream

feature fusing architecture, we choose FiLM [56]; for a large-scale pretrained

model we take mDETR [57]; we use NSCL [54] and NSVQA [55] as repre-

sentative neuro-symbolic methods. We observe that all these models suffer

from domain shifts to varying degrees of sensitivity. We analyze each factor

separately to examine the influence of different model designs. Specifically, we

find that the step-by-step design of neural modular methods enhances their

robustness to changes in question redundancy compared with non-modular

ones; however, the non-modular models are more robust to visual complexity.

Furthermore, thanks to its decomposed reasoning and perception, NSVQA is

more robust to concept distribution shifts.

While existing models suffer from domain shifts with different charac-

teristics, we make a technical improvement over NSVQA which enables it

to significantly outperform existing models on three of the four factors. In

particular, we inject probabilities into the deterministic symbolic executor of

NSVQA, empowering it to take into account the uncertainty of scene under-

standing. We name our model probabilistic NSVQA (P-NSVQA), and show
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that its performance improvement in both the in-domain and out-of-domain

settings. With superior results of P-NSVQA, we suggest that disentangling rea-

soning from vision and language understanding, together with probabilistic

uncertainty, gives a strong model that is robust to domain shifts.

Our contributions are as follows. (1) We introduce the Super-CLEVR bench-

mark to diagnose VQA robustness along four different factors independently.

This benchmark can also be used for part-based reasoning. (2) We enhance a

neural-symbolic method by taking the uncertainty of visual understanding

into account in reasoning. (3) We conduct detailed analysis of four existing

methods, as well as our novel approach to study the influence of model de-

signs on distinct robustness factors. We conclude that disentangled reasoning

and perception plus explicit modeling of uncertainty leads to a more robust

VQA model.

3.2 Related work

Visual question answering. Popular VQA methods fall into three categories.

Two-stream methods extract features for image and questions using CNN and

LSTM respectively, then enable interaction between the two modalities with

different feature fusing methods [50, 18, 23, 72, 73, 56, 74]. Neural symbolic

methods, on the other hand, use a parse-then-execute pipeline where the

question is parsed into a functional program, which is then executed on the

image using neural modules [55, 54]. Recently, transformers-based models

have achieved impressive performance on various vision-and-language tasks

by pretraining on large scale dataset then finetuning for downstream tasks
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[2, 75, 5, 76, 57]. We choose FiLM [56], NSCL[54] and mDETR[57] as category

representatives.

VQA datasets. Datasets containing real images and human-written ques-

tions have been widely used to benchmark VQA models, e.g. VQA [14], VQAv2

[58], Visual 7w [77], VizWiz [78], Visual Genome [79], COCO QA [80], etc.

However, subsequent work has revealed the strong prior and bias in those

datasets which might be exploited by models to correctly predict the answers

without reasoning [7, 81, 8, 9, 58, 11, 12]. Attempts to address this problem

include better balancing datasets [66] and creating counterfactual examples

[37, 30]. To assess a model’s true reasoning ability, the CLEVR dataset [70] pro-

poses to generate complex multi-step questions on synthetic images, which is

then extended to various vision-and-language tasks [82, 83, 84, 85, 36, 86, 87].

The GQA dataset [59] extends CLEVR-style questions to real images. Our

benchmark is distinct from existing ones because we introduce more com-

plex visual scenes into CLEVR and provide controllability to study domain

robustness on isolated factors.

Domain shift in VQA. Domain shift is a long-standing challenge in com-

puter vision, explore in prior works in domain adaptation [88, 89, 60, 90] and

domain generalization [61, 62]. Recent works have focused on domain shifts

in VQA. [63, 65] improves model adaptation between datasets by feature

learning. [64] analyze domain shifts between nine popular VQA datasets

and proposes an unsupervised method to bridge the gaps. [67] generalize

symbolic reasoning from synthetic to real dataset. [68] introduce a question-

answer generation module that simulates the domain shifts. [69] propose a
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training scheme X-GGM to improve out-of-distribution generalization. [36]

assess models generalization on the CLOSURE of linguistic components. In

contrast to prior works we study each of the different domain shift factors

independently with our virtual benchmark.

3.3 Super-CLEVR

3.3.1 Motivation: domain shift factors

Visual complexity. A major difference between different VQA datasets is

visual complexity. For example, in the CLEVR dataset, objects are simple,

atomic shapes while in real-world data, objects are more complex and have

hierarchical parts. While hard to quantify, visual complexity is related to

various factors, such as object variety, object size, background, texture, light-

ing, occlusion, view point, etc. In our work, we control visual complexity by

introducing more challenging objects that can have distinct attributes associ-

ated with their parts, and by optionally pasting various textures onto objects.

Examples of generated images with different complexity levels are shown in

Fig. 3.1.

Question redundancy. Question redundancy refers to the amount of

over-specified or redundant information in the question, which can be in

the form of either attributes or relationships. For example, in Fig. 3.1, “what

color is the large bus behind the cyan car”, large (attributes) and behind the

cyan car (relationship) are redundant because there is only one bus in the

image. As observed in linguistics and cognitive science [91, 92, 93, 94], human

speakers may include over-specified information when identifying a target
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object, which has also been studied in referring expression generation [95].

For VQA, as analyzed in [67], a significant difference between synthetic and

real datasets is that real questions contain some redundant information, which

sometimes is a distraction leading to model prediction errors. Therefore, in

this work, we generate questions with different redundancy levels and study

the effect of question redundancy on model behaviors.

Concept distribution. The distributions of concept, i.e. objects (e.g. car) and

attributes (e.g. large), are distinct across different VQA datasets. For example,

while colors are well-balanced in CLEVR dataset, in the GQA dataset, the

color distribution is long-tailed where “white” appears > 50 times more

frequently than “gold”. Long-tailed distributions have been a challenge in

many computer vision tasks [96, 97, 98, 99, 100]. In VQA, the long-tailed

concept distribution not only hinders the learning of infrequent concepts due

to few training samples, but also introduces strong biases and priors in the

dataset that may mislead the models. For example, “tennis” is the correct

answer to most questions with “what sport is ...” [66]. With strong priors in

data, it is hard to assess the true reasoning capacity of current models. While

previous works address this problem by carefully re-balancing datasets [66],

in our work, we controllably vary the concept distribution in our dataset and

study model robustness to concept distribution shifts.

Concept compositionality. Concept compositionality refers to how differ-

ent concepts (shapes, attributes) compose and co-occur with each other, e.g.

roses are usually red while violets are usually blue [11]. Concept composi-

tionality can be viewed as a conditional concept distribution in the context
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• Texture: dotted, checkered, stripped, none
• Color: green, gray, brown, yellow, red, purple, cyan, blue
• Size: large, small
• Material: rubber, metal

• Object with parts:

car bus airplane

bike motorcycle

Figure 3.2: Super-CLEVR contains 21 vehicle models belonging to 5 categories, with
controllable attributes.

of other concepts. Shifts in concept compositionality impede the generaliza-

tion of VQA models. For example, the model may fail to recognize a green

banana because most bananas are yellow in the training data [101]. Previous

works evaluate the out-of-distribution performance by collecting counterfac-

tual testing examples [7]. In our work, we control the compositionality of

shapes and colors with an intuitive motivation: if, for example, in the training

data, bicycles are red and cars are blue, will the models be able to recognize

blue bicycles and red cars in testing?

3.3.2 Dataset generation

Super-CLEVR follows a similar data generation pipeline as CLEVR, but with

more complex visual components and better control of domain gap factors.

We describe the generation procedure below.
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Objects with parts. To improve the visual complexity of CLEVR scenes,

we replace the simple shapes (e.g., cube, sphere) in CLEVR dataset with vehicles

from UDA-Part dataset [71]. There are 21 vehicle models, belonging to 5

categories: car, motorbike, aeroplane, bus, and bicycle. Each 3D model comes

with part annotations, e.g., left front wheel or left right door for car. Examples for

the vehicle models are shown in Fig. 3.2. We remove or merge small parts from

the original annotations to avoid severe difficulty in visual understanding.

The full object and parts list is in the supplementary material.

Attributes. Besides the attributes in the original CLEVR dataset, i.e. color,

material, size, we optionally add texture as an additional attribute to increase

visual complexity. Note that in order to enable part-based questions, the

attributes (color or material) of object parts can be different from that of the

object. For example, a blue car can have a red wheel or a green door. In this

case, the attribute of the holistic object refers to the attribute of its main body

(e.g. the blue car has blue frame).

Scene rendering. Following CLEVR, each scene contains 3 to 10 objects.

The objects are placed onto the ground plane with random position and

orientation. When placing the objects, we ensure that the objects do not

overlap with each other and we avoid severe occlusion by thresholding the

number of visible pixels for each object. Random jitters are added to lamp and

camera positions. When rendering, we also save the ground-truth bounding

boxes and segmentation masks for each of the objects and their parts, which

are required when training some of the models.

Question generation. Super-CLEVR follows similar question generation
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pipeline in CLEVR, which instantiates question templates using the underly-

ing reasoning program that can be operated on the scene graph. For example,

the program select_shape(truck) → query_color(·) can be instantiated

as question “what is the color of the truck”. Therefore, redundancy level of

questions can be controlled by removing or adding redundant reasoning steps

in the underlying reasoning program.

3.3.3 Controlling the dataset

To study domain generalization, we generate several variants of the dataset

for each of the domain shift factors. The variants of the datasets serve as

different data domains to test the model robustness. Here we describe the

method for controllably generating the dataset variants.

Visual complexity. We generate three variants of the dataset with different

levels of visual complexity: easy, mid (middle) and hard. The only difference

between the 3 versions is visual complexity: for the easy version, objects with

different sizes, colors and materials are placed into the scene; for the middle

version, we choose 3 parts on each object that are visible and randomly change

their attributes; for the hard version, we further add random textures to the

objects and parts. An example of the 3 dataset versions can be found in Fig. 3.1.

Note that the scene layout and the questions are shared, so that the influence

of visual complexity can be isolated and studied independently.

Question redundancy. Three variants of the dataset with different re-

dundancy levels are generated: rd-, rd (default), rd+. By default (rd), as in
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original CLEVR dataset, the questions contain some redundant attributes re-

sulting from random sampling, while all redundant relationships are removed.

In rd-, we also remove all redundant attributes from the questions, leading

to no redundancy in the questions. In rd+, we add all possible attributes

and relationships into the question, so that questions contain a high level of

redundancy. For all the variants, the questions are ensured to be valid.

Concept distribution. We generate three dataset variants with different

concept distributions: bal (balanced), slt (slightly unbalanced) and long (long-

tail distributed). More specifically, we change the distribution of shapes, colors

and materials while the distribution of size is kept fixed in order to keep

visual complexity consistent, since objects with smaller sizes are visually

harder to recognize. By default (bal), the shapes and attributes are randomly

sampled, leading to a balanced distribution. For slt and long, the concept

distribution d is generated by di = a−i, where i is the index of the concept. a

is a hyper-parameter controlling the length of the tail. A larger a leads to more

imbalanced distribution and a = 1 leads to flat distribution (cf. Fig. 3.1). For

slt, a = 1.3; for long, a = 2.0. In addition, to better analyze the performance on

the frequent and rare concepts, we generate three variants for testing purpose

only: head (frequent concepts in the long-tail distribution), tail (infrequent/rare

concepts), and oppo (opposite to the long-tail distribution). We test each model

on those three variants to analyze the performance on concepts with different

degrees of frequency.

Concept compositionality. We generate 3 versions of the dataset, co-0,

co-1 and co-2, with different compositions of the 21 shapes (from 5 categories)
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and the 8 colors. The compositionality of the dataset is controlled with the

co-distribution matrix M ∈ R21×8, where each entry Mij is the probability an

object of the i-th shape has the j-th color. Entries in each row of M sum up

to 1. In the version co-0, M is a flat matrix so that the shapes and colors are

randomly composed. In co-1, each shape in one category has a different color

distribution, e.g. truck and sedan, while shapes from different categories may

share the same color distribution e.g. sedan and airliner. Oppositely, in co-2,

we make the shapes in same category have the same color distribution, whiles

shapes from different categories have different distributions. The motivation is

that since shapes from the same category are visually similar, the difference in

co-1 and co-2 will help analyze the difference in model predictions on visually

similar objects and dissimilar objects when composed with different color

distributions.

Dataset Statistics. Every dataset variant contains 30k images, including

20k for training, 5k for validation and 5k for testing. Each image is paired

with 10 object-based and 10 part-based questions. By default, the dataset refers

to the version with mid visual complexity level (i.e. objects are untextured

and has up to 3 parts with distinct attributes), rd redundancy level, balanced

(bal) concept distribution and random (co-0) compositionality. More dataset

statistics are in supplementary materials.
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3.4 Evaluated methods

3.4.1 Simple baselines

Random, Majority. These simple baselines pick a random or the most frequent

answer for each question type in the training set as the predicted answer.

LSTM. This question-only baseline encodes the question word embed-

dings with LSTM [102] and predicts answer with an MLP on top of the final

hidden states of the LSTM.

CNN+LSTM. The image is represented with features extracted by CNN

and question is encoded by LSTM. An MLP predicts answer scores based on

the concatenation of image and question features.

3.4.2 Existing models

FiLM. We choose Feature-wise Linear Modulation [56] as a representative of

classic two-stream feature merging methods. The question features extracted

with GRU [103] and image features extracted with CNN are fused with the

proposed FiLM module.

mDETR. mDETR [57] is a transformer-based detector trained to detects

objects in an image conditioned on a text query. The model is pretrained with

1.3M image and text pairs and can be finetuned for various downstream tasks

like referring expression understanding or VQA.

NSCL. The Neuro-Symbolic Concept Learner [54] is a representative neural

symbolic method. NSCL executes neural modules on the scene represen-

tation based on the reasoning program, during which the modules learns
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embeddings of each concept with the answer supervision.

NSVQA. Neural-Symbolic VQA [55] is a neural symbolic method composed

of three components: A scene parser (Mask-RCNN [104]) that segments an

input image and recovers a structural scene representation, a question parser

that converts a question from natural language into a program and a program

executor that runs the program on the structural scene representation to

obtain the answer. Notably, compared to NSCL, the individual components of

NSVQA can be learned separately, hence, for example the scene parser can be

learned from data that does not necessarily have Visual-Question annotations.

3.4.3 Probabilistic NSVQA (P-NSVQA)

Since the program executor in NSVQA is a collection of deterministic, generic

functional modules, it can be augmented with a probabilistic reasoning pro-

cess that takes into account the confidence of the predictions of the scene

parser. This allows the model to execute the program that has the largest joint

likelihood, instead of only taking the maximal likelihood execution at each

step of the program. The experiment results demonstrate a significant per-

formance improvement of this probabilistic approach over the deterministic

NSVQA model proposed in [55].

In particular, we interpret the confidence of the Mask-RCNN output as a

likelihood function for all detected object classes pobject and their attributes

patt. Moreover, we define a likelihood pspatial for the spatial relations between

objects (behind, in front, left, right) that is proportional to the distance between

the centers of two bounding boxes. Given a reasoning program containing
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multiple reasoning steps, we execute each step based on the scene parsing

likelihood and produce an step-wise output with confidence. Finally, we use

a factorized model, multiplying the output for all the steps to get the final

answer prediction. We refer readers to the Appendix for more details.

3.4.4 Implementation details

Training mDETR requires ground-truth grounding of question tokens to image

regions, which is available in Super-CLEVR. NSCL requires bounding box of

objects, which can predicted using a trained Faster RCNN, and the reasoning

program, which can be parsed using a trained parser. Similarly, ground-

truth programs are used for training NSVQA and P-NSVQA. Note that we

empirically find that the question-to-program parsing is a relatively easy

task (> 99% accuracy using a simple LSTM), so we focus more on models’

reasoning ability in our analysis.

Unless specified, the models are trained with default setting as in the

official implementation. FiLM is trained for 100k iterations with batch size

256. mDETR is trained for 30 epochs with batch size 64 using 2 GPUs for both

the grounding stage and the answer classification stage. NSCL is trained for

80 epochs with batch size 32. For NSVQA and P-NSVQA, we first train the

object parser (Mask RCNN [104]) for 30k iterations with batch size 16, then

train the attribute extraction model (using the Res50 backbone) for 100 epochs

with batch size 64. For P-NSVQA, when counting the objects or determining

whether objects exist in the scene, we use a threshold (0.7) to obtain the final

selected objects. Early stopping is used based on validation accuracy. All the
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models are trained with 200k questions. We repeat experiments on default split

for 3 times with different random seeds and get std of ±0.10 (P-NSVQA) and

±0.40 (NSVQA), showing the statistical significance of our results, then we

only run other experiments once.

3.5 Results and analysis

In this section, we first show evaluation results for in-domain setting, then

provide results and analysis on out-of-domain evaluation. Finally, we describe

additional studies and future works.

3.5.1 In-domain results

In-domain evaluation refers to the setting where the training and testing data

come from the same domain (the default dataset variant in this case). We

compare the in-domain results on Super-CLEVR and CLEVR. The results are

shown in Fig. 3.3.

For all the models, the performance is lower on Super-CLEVR than CLEVR,

suggesting that Super-CLEVR is a more challenging benchmark. The scenes

with vehicles are much harder visually for the models to understand compared

with the simpler shapes from CLEVR. Note that the performance gap on

two datasets for simple baselines (Random, Majority, LSTM, CNN+LSTM)

is smaller than for the other better models. This is because Super-CLEVR

contains more object types, and therefore the performance of simply guessing

is lower than on CLEVR.

When comparing the performance of different models, we find that the
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Figure 3.3: Comparison of models’ accuracy on Super-CLEVR and the original CLEVR
dataset.

neural modular methods, i.e. NSCL, NSVQA, P-NSVQA, perform much better

than non-modular ones. This is not surprising given their nearly perfect

performance on the original CLEVR dataset, which shows its strong ability to

model synthetic images. The large-scale pretrained grounding model mDETR,

which is a leading model on both real and synthetic images, also achieves

good performance (82.7%) on Super-CLEVR. The two-stream method FiLM

does not achieve very strong performance (53.2%), but is still much better

than the other simple baselines.

Our proposed P-NSVQA outperforms all the other models. In particular,

on Super-CLEVR, it outperforms its deterministic counterpart, NSVQA, by

2.96%. This shows the advantage of taking into account the probabilities when

the scenes are challenging thus the model’s uncertainty of predictions can be
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utilized.

3.5.2 Out-of-domain results

FiLM mDETR NSCL NSVQA Prob NSVQA

Visual Complexity

easy mid hard easy mid hard easy mid hard easy mid hard easy mid hard

easy 59.96 53.95 50.66 93.36 84.30 82.97 95.13 92.31 90.81 95.19 94.19 94.09 96.76 95.98 96.37
mid 57.41 53.28 50.18 83.34 82.36 81.27 84.5 89.10 86.33 81.99 92.80 93.78 86.25 95.76 95.11
hard 55.95 53.11 50.47 79.71 79.94 80.71 76.85 78.66 85.08 73.11 79.71 92.65 79.81 86.47 95.36

Question Redundancy

rd- rd rd+ rd- rd rd+ rd- rd rd+ rd- rd rd+ rd- rd rd+

rd- 51.42 52.54 53.51 83.94 80.37 66.28 88.64 88.82 90.33 92.95 92.94 92.67 95.66 95.72 95.43
rd 50.39 53.28 54.78 82.77 82.36 70.36 88.45 89.10 91.45 91.19 92.78 92.14 94.87 95.72 95.43
rd+ 46.14 52.30 71.47 78.48 84.05 90.42 87.94 88.34 91.16 91.38 91.96 92.80 94.88 95.47 95.72

Concept Distribution

bal slt long bal slt long bal slt long bal slt long bal slt long

bal 50.47 53.04 54.35 80.71 75.79 74.54 85.08 83.79 75.10 92.65 90.82 83.74 95.36 94.89 89.88
long 49.43 54.75 62.96 79.06 80.29 90.66 85.33 89.42 91.10 92.73 93.38 92.53 96.31 96.32 95.25

head 48.60 58.06 61.60 80.75 79.60 87.46 84.58 88.39 90.19 93.87 94.82 92.48 96.42 96.80 95.92
tail 51.80 48.70 50.08 81.50 70.88 60.94 86.10 80.27 60.55 90.26 89.20 75.32 94.08 93.20 82.68
oppo 49.06 48.93 46.68 79.13 68.37 56.98 85.07 77.86 55.14 91.22 88.65 71.32 95.76 94.09 79.74

Concept Compositionality

co-0 co-1 co-2 co-0 co-1 co-2 co-0 co-1 co-2 co-0 co-1 co-2 co-0 co-1 co-2

co-0 53.28 57.00 56.1 83.36 77.03 82.43 89.1 82.52 83.77 92.80 90.11 91.59 95.76 94.02 95.12
co-1 52.41 60.57 56.67 79.46 82.45 83.93 78.89 87.18 84.2 78.74 89.99 90.67 87.12 94.53 94.78
co-2 52.96 57.37 60.53 80.03 77.41 87.24 78.40 81.55 88.84 77.85 89.28 92.23 87.19 93.49 95.61

Table 3.1: Accuracy of models trained and tested on different domains. Column
headings indicate training settings, while rows indicate the dataset variant for testing.
The best performance in each row (i.e. the best training setting) is marked in bold
and best performance in each column (i.e. the best testing setting) is underlined.
Description for different splits is in Sec. 3.3.3 and analysis is in Sec. 3.5.2.

In this section, we train and test the five models (FiLM, mDETR, NSCL,

NSVQA and P-NSVQA) on different dataset variants, and diagnose their

domain robustness on each of the four domain shift factors. Please refer to

Sec. 3.3.3 for a description of different variants. The validation accuracy is

used for analysis here and the results are shown in Tab. 3.1.
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All the methods suffer from domain shifts. The results show that the best

performance mostly occurs in situations where the model is tested on the

same dataset variant as it is trained on, i.e. the bold or underlined numbers

fall mostly on the diagonals in Tab. 3.1.

We compare the domain robustness of the five models by measuring the

relative performance decrease when the testing data differs from the training

data, i.e. smaller performance drop on different testing domains means better

robustness. Based on this intuition, for easier understanding of Tab. 3.1,

we propose a measurement metric for domain robustness named Relative

Degrade (RD) to better analyze the results. We define Relative Degrade as the

the percentage of accuracy decrease when the model is tested under a domain

shift, i.e. the accuracy drop divided by the in-domain accuracy. Specifically, if

a model gets accuracy a under in-domain testing (i.e. testing with the same

dataset variant as training) and accuracy b under out-of-domain testing (i.e.

testing with a different dataset variant from training), then RD = (a − b)/a.

Since we train each model on three data variants, the RD’s for the three models

are averaged to measure its domain robustness.1

Tab. 3.2 shows the Relative Degrade of the five models on the four factors.

We see that P-NSVQA outperforms other models by a significant margin on

three of the four factors, indicating that it has better overall domain robustness.

In the following, we take a closer look at the results on each of the factors

separately, to diagnose the influence of different model designs.

1For concept distributions, we compute relative degrade with a slight change: we compute
the accuracy drop from head to tail and the drop from long to oppo, take their average, and
divide by the accuracy on bal.
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Visual Redund. Dist. Comp.

FiLM 4.03 21.33 28.46 9.04
mDETR 9.81 19.05 36.34 9.45
NSCL 15.57 0.92 37.44 15.40
NSVQA 17.48 1.72 20.92 11.44

Prob NSVQA 12.88 0.84 13.72 7.00

Table 3.2: Relative Degrade under domain shifts, i.e. the percentage of accuracy decrease
when the model is tested with domain that differs with training. Lower RD means
better robustness.

Question redundancy. Neural modular methods are much more robust

to question redundancy shifts than non-modular ones. The relative degrades

for modular methods are less than 2%, while one-modular ones degrade

for around 20%. Due to the step-by-step design of the reasoning in mod-

ular methods, each reasoning step is independent of the others so that the

models are less likely to learn the spurious correlation between question and

answers. Therefore the modular methods are less vulnerable to change in

question/program length.

Visual complexity. Different from our findings on question redundancy,

for domain shifts in visual complexity, non-modular methods are more robust

compared to modular ones. As shown in Tab. 3.2, while FiLM and mDETR

gets less than 10% degrade, NSCL and (P-)NSVQA degrade for more than

12%. The reason might be that the simple reasoning modules in modular

methods can not process the visual signals as well as the dense non-modular

models.

Comparing P-NSVQA with NSVQA, we find that injecting probability into
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deterministic symbolic reasoning greatly improves the robustness on visual

complexity (4.04% decrease in RD). This suggests that some errors in visual

understanding can be corrected and recovered by taking into account the

uncertainty of visual parsing and combining the results of each reasoning step

with probability.

Concept distribution. While all the four existing models suffer a lot

(larger than 20% RD) on domain shifts in concept distribution, we see that the

symbolic method NSVQA is better than the other three (by more than 7.5%).

With the disentangled reasoning and visual understanding components in

NSVQA, the distribution priors in the images and the programs/answers

cannot intertwine with each other, which prevent the model heavily relying

on the priors. With uncertainty, we can further boost the robustness of NSVQA

with a large margin (from 21% to 14% RD).

Moreover, the head-tail results suggests that the overall accuracy, which is

commonly used to measure VQA performance, should be taken with cautious.

When the testing split is imbalanced, the seemingly high accuracy is mislead-

ing because the head concepts dominates the testing while the tail ones are not

well-reflected. For example, for NSCL, although it gets high accuracy (91%)

on the long-tailed data, its performance is only 60.6% on the tail concepts. In

real-world datasets, the data are usually not well-balanced, which suggests

the value of synthetic testing.

Concept compositionality. Comparing the existing methods, we find that

the non-modular methods seems to be more robust than modular methods

NSCL or NSVQA. However, with uncertainty, P-NSVQA improves the result
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of NSVQA, which even outperforms the non-modular methods. This suggest

the large potential of better robustness of modular methods by improving

current models.

In summary, while non-modular methods are more robust to visual com-

plexity shifts, the modular symbolic methods (improved with uncertainty) are

more robust on the other three factors. By disentangling reasoning with visual

understanding, separately executing every each reasoning step then merging

the results of the steps using probabilities based on uncertainty, our P-NSVQA

outperforms all the existing models in question redundancy, concept distri-

bution and compositionality. Therefore, we suggest that symbolic reasoning

with uncertainty leads to strong VQA models that are robust to domain shifts.

3.5.3 More analysis and future work

Synthetic-to-real transfer. We provide an additional proof-of-concept study

to show that the findings drawn from Super-CLEVR dataset can transfer

to real datasets. In the following experiments, we show our finding that

neuro-symbolic methods (NSCL, NSVQA, P-NSVQA) are more robust than

mDETR on question redundancy also holds true on the real GQA dataset

[59]. More precisely, we progressively removed the redundant operations

from the reasoning program in GQA testdev split, and then regenerated ques-

tions using a program-to-question generator. Using the change of models’

testing accuracy as the redundant operations are removed, we can evaluate

the models’ robustness towards question redundancy. The results are show
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in Tab. 3.3.2 We observe that the performance drop of mDETR is much larger

than neuro-symbolic methods as the redundant information is progressively

removed, which indicates that symoblic methods have better question redun-

dancy than mDETR on GQA dataset. This is consistent with our findings on

Super-CLEVR.

0% 14% 32% 70% 91% 100%

mDETR 0 -4.82 -8.46 -13.16 -13.88 -14.56
NSCL 0 -0.14 -0.34 -1.09 -1.71 -2.59
NSVQA 0 -3.47 -4.80 -7.01 -7.02 -7.02
P-NSVQA 0 -1.93 -3.15 -5.73 -5.91 -5.78

Table 3.3: Accuracy drop on the GQA dataset when redundant information is pro-
gressively removed.

Reasoning with part-object hierarchies. In addition to evaluating domain

generalization, Super-CLEVR can be extended for broader purposes, e.g. part-

based reasoning. We can ask questions like “what is the color of the front

wheel of the bike?”, “what is the color of the vehicle that has a yellow wheel”,

etc. Those questions require the model to correctly understanding the part-

object hierarchy, which is an ability that current VQA models lack.

Limitations. The main limitations of our work lie in the synthetic nature

of our dataset. Future efforts can be made in collecting better controlled and

balanced real datasets for model diagnosis. We emphasize that the purpose of

the dataset is for model diagnosis and that models should also be tested on

real data.
2For implementation of NSCL on a real-word dataset, we use the model in [67] (the version

without calibration). The model accuracies on the original not-perturbed GQA testdev split
are as following: mDETR (61.67%), NSCL (56.13%), NSVQA (39.58%), P-NSVQA (39.66%).
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3.6 Conclusion

We diagnose domain shifts in visual reasoning using a proposed virtual bench-

mark, Super-CLEVR, where distinct factors can be independently studied

with controlled data generation. We evaluate four existing methods and show

that all of them struggle with domain shifts, highlighting the importance

of out-of-domain testing. Among the evaluated methods, neural modular

methods are more robust towards question redundancy. In particular, NSVQA

with disentangled perception and reasoning shows better robustness towards

distribution and compositionality shifts. We further propose P-NSVQA, which

improves NSVQA with uncertainty in the reasoning modules. We show that

P-NSVQA outperforms all the existing methods in both in-domain testing

and out-of-domain testing. With detailed analysis, our study suggests that

disentangling reasoning and perception, combined with probabilistic uncer-

tainty, form a strong VQA model that is more robust to domain shifts. We

hope our analysis may facilitate better understanding of strengths and weak-

nesses of VQA models and, more broadly, future work might explore using

the Super-CLEVR benchmark for other tasks like part-based reasoning.
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Chapter 4

3D-Aware Visual Question
Answering about Parts, Poses and
Occlusions

Despite rapid progress in Visual question answering, existing datasets and

models mainly focus on testing reasoning in 2D. However, it is important that

VQA models also understand the 3D structure of visual scenes, for example to

support tasks like navigation or manipulation. This includes an understanding

of the 3D object pose, their parts and occlusions. In this chapter, we introduce

the task of 3D-aware VQA, which focuses on challenging questions that

require a compositional reasoning over the 3D structure of visual scenes.

We address 3D-aware VQA from both the dataset and the model perspective.

First, we introduce Super-CLEVR-3D, a compositional reasoning dataset that

contains questions about object parts, their 3D poses, and occlusions. Second,

we propose PO3D-VQA, a 3D-aware VQA model that marries two powerful

ideas: probabilistic neural symbolic program execution for reasoning and

deep neural networks with 3D generative representations of objects for robust

59



visual recognition. Our experimental results show our model PO3D-VQA

outperforms existing methods significantly, but we still observe a significant

performance gap compared to 2D VQA benchmarks, indicating that 3D-aware

VQA remains an important open research area. The code is available at

https://github.com/XingruiWang/3D-Aware-VQA.

4.1 Introduction

Visual question answering is a challenging task that requires an in-depth un-

derstanding of vision and language, as well as multi-modal reasoning. Various

benchmarks and models have been proposed to tackle this challenging task,

but they mainly focus on 2D questions about objects, attributes, or 2D spatial

relationships. However, it is important that VQA models understand the 3D

structure of scenes, in order to support tasks like autonomous navigation and

manipulation.

An inherent property of human vision is that we can naturally answer

questions that require a comprehensive understanding of the 3D structure in

images. For example, humans can answer the questions shown in Fig. 4.1,

which ask about the object parts, their 3D poses, and occlusions. However,

current VQA models, which often rely on 2D bounding boxes to encode a

visual scene [50, 76, 57] struggle to answer such questions reliably (as can

be seen from our experiments). We hypothesize this is caused by the lack of

understanding of the 3D structure images.

In this chapter, we introduce the task of 3D-aware VQA, where answering

the questions requires compositional reasoning over the 3D structure of the
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Q: What is the name of the brown part of the large rubber thing? Wheel
Q: What is the material of the trunk that belongs to the same object as
the purple part? Metallic

Part

3D Pose

Occlusion

Q: Which direction the double bus is facing? Left
Q: What is the color of the small object which faces to the right? Truck

Q: Is the bumper of the purple SUV occluded? No
Q: What is the size of the aeroplane whose wing is occluded? Small

filter[aeroplane] query_sizeobj_to_part part_to_objfilter_part[wing] filter_occludee

What is the size of the aeroplane whose wing is occluded? 

Figure 4.1: Examples from Super-CLEVR-3D. We introduce the task of 3D-aware
VQA, which requires 3D understanding of the image, including the parts, 3D poses,
and occlusions.

visual scenes. More specifically, we focus on challenging questions that require

multi-step reasoning about the object-part hierarchy, the 3D poses of the

objects, and the occlusion relationships between objects or parts.

We address the challenging 3D-aware VQA task from both the dataset and

the model perspective. From the dataset perspective, we introduce Super-

CLEVR-3D, which extends the Super-CLEVR dataset [105] with 3D-aware

questions. Given the visual scenes from Super-CLEVR that contain randomly

placed vehicles of various categories, we define a set of 3D-aware reasoning

operations and automatically generate 3D questions based on these operations.

Fig. 4.1 shows examples of the images, questions and the underlying 3D

operations for the questions. From the model perspective, we introduce

PO3D-VQA, a VQA model that marries two powerful ideas: probabilistic

neural symbolic program execution for reasoning and a deep neural network

with 3D generative representations of objects for robust visual scene parsing.

Our model first recovers a 3D scene representation from the image and a

program from the question, and subsequently executes the program on the
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3D scene representation to obtain an answer using a probabilistic reasoning

process that takes into account the confidence of predictions from the neural

network. We refer to our system as PO3D-VQA, which stands for Parts, Poses,

and Occlusions in 3D Visual Question Answering.

On Super-CLEVR-3D, we experiment with existing representative models,

their variants, and our model PO3D-VQA. The results show that our model

outperforms existing methods significantly, leading to an improvement in

accuracy of more than 11%, which shows the advantage of the generative

3D scene parser and the probabilistic neural symbolic reasoning process.

Moreover, further analysis on questions with different difficulty levels reveals

that the improvements of our model are even greater on harder questions

with heavy occlusions and small part sizes. Our results indicate that a reliable

3D understanding, together with the modular reasoning procedure, produces

a desirable 3D-aware VQA model.

In summary, our contributions are as follows. (1) We introduce the chal-

lenging task of 3D-aware VQA and propose the Super-CLEVR-3D dataset,

where 3D visual understanding about parts, 3D poses, and occlusions are

required. (2) We propose a 3D-aware neural modular model PO3D-VQA

that conducts probabilistic reasoning in a step-wise modular procedure based

on robust 3D scene parsing. (3) With experiments, we show that 3D-aware

knowledge and modular reasoning are crucial for 3D-aware VQA, and suggest

future VQA methods take 3D understanding into account.
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4.2 Related Work

Visual Question Answering. Rapid progress has been made in VQA [14]

in both the datasets and the models. To solve the challenging VQA datasets

[58, 77, 78, 80] with real images, multiple models are developed including

two-stream feature fusion [50, 18, 23, 72, 73, 56, 74] or transformer-based

pretraining [2, 75, 5, 76, 57]. However, the real datasets are shown to suffer

from spurious correlations and biases [7, 81, 8, 9, 58, 11, 12]. Alternatively,

synthetic datasets like CLEVR [70] and Super-CLEVR [105], are developed

to study the compositional reasoning ability of VQA systems, which are also

extended to study other vision-and-language tasks [82, 83, 84, 85, 36, 86, 87].

The synthetic datasets promote the development of neural modular methods

[106, 55, 54, 107], where the reasoning is done in a modular step-by-step

manner. It is shown that the modular methods have nice properties including

interpretability, data efficiency [55, 54], better robustness [105] and strong

performance on synthetic images [55]. However, most existing methods rely

on region features [50, 76] extracted using 2D object detectors [108] for image

encoding, which is not 3D-aware. We follow the works on the synthetic dataset

and enhance the modular methods with 3D understanding.

VQA in 3D. Multiple existing works study VQA under the 3D setting,

such as SimVQA [101], SQA3D [109], 3DMV-VQA [110], CLEVR-3D [111],

ScanQA [112], 3DQA [112], and EmbodiedQA [113], which focus on question

answering on the 3D visual scenes like real 3D scans [109, 111, 114, 112],

simulated 3D environments [25, 113], or multi-view images [110]. PTR [87]

is a synthetic VQA dataset that requires part-based reasoning about physics,
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analogy and geometry. Our setting differs from these works because we focus

on 3D in the questions instead of 3D in the visual scenes, since our 3D-aware

questions explicitly query the 3D information that can be inferred from the 2D

input images.

3D scene understanding. One popular approach for scene understand-

ing is to use the CLIP features pretrained on large-scale text-image pairs

and segment the 2D scene into semantic regions [115, 116]. However, these

methods lack a 3D understanding of the scene and cannot be used to answer

3D-related questions. Another approach is to adopt category-level 6D pose

estimation methods that can locate objects in the image and estimate their 3D

formulations. Previous approaches include classification-based methods that

extend a Faster R-CNN model for 6D pose estimation [117, 118] and composi-

tional models that predicts 6D poses with analysis-by-synthesis [118]. We also

notice the huge progress of 3D vision language foundation models, which

excel in multiple 3D vision-language understanding tasks [110, 119, 120]. Still,

we focus on the reasoning with compositional reasoning that brings more

interpretability and robustness [105].

4.3 Super-CLEVR-3D Dataset

To study 3D-aware VQA, we propose the Super-CLEVR-3D dataset, which

contains questions explicitly asking about the 3D object configurations of the

image. The images are rendered using scenes from the Super-CLEVR dataset

[105], which is a VQA dataset containing synthetic scenes of randomly placed

vehicles from 5 categories (car, plane, bicycle, motorbike, bus) with various of
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sub-types (e.g. different types of cars) and attributes (color, material, size). The

questions are generated by instantiating the question templates based on the

image scenes, using a pipeline similar to Super-CLEVR. In Super-CLEVR-3D,

three types of 3D-aware questions are introduced: part questions, 3D pose

questions, and occlusion questions. In the following, we will describe these

three types of questions, and show the new operations we introduced for our

3D-aware questions about object parts, 3D poses, and occlusions. Examples of

the dataset are shown in Fig. 4.1.

Part questions. While in the original Super-CLEVR dataset refers to objects

using their holistic names or attributes, objects are complex and have hierar-

chical parts, as studied in recent works [71, 121, 87]. Therefore, we introduce

part-based questions, which use parts to identify objects (e.g. “which vehicle

has red door”) or query about object parts (e.g. “what color is the door of the

car”). To enable the generation of part-based questions, we introduce two

new operations into the reasoning programs: part_to_object(·), which find

the objects containing the given part, and object_to_part(·), which select

all the parts of the given object. We also modify some existing operations (i.e.

filter, query and unique), enabling them to operate on both object-level and

part-level. With those reasoning operations, we collect 9 part-based templates

and instantiate them with the image scene graph to generate questions.

3D pose questions. Super-CLEVR-3D asks questions about the 3D poses

of objects (e.g. “which direction is the car facing in”), or the pair-wise pose

relationships between objects (e.g. “which object has vertical direction with the

red car”). The pose for an individual object (e.g. “facing left”) can be processed
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in a similar way as attributes like colors, so we extend the existing attribute-

related operations like filter and query to have them include pose as well.

For pair-wise pose relationship between objects, we add three operations, i.e.

same_pose, opposite_pose and vertical_pose, to deal with the three types

of pose relationships between objects. For example, opposite_pose(·) returns

the objects that are in the opposite pose direction with the given object. 17

templates are collected to generate 3D pose questions.

Occlusion questions. Occlusion questions ask about the occlusion be-

tween entities (i.e. objects or parts). Similar to 3D poses, occlusion can also be

regarded as either an attributes for an entity (e.g. “which object is occluded”),

or as a relationship between entities (e.g. “which object occludes the car door“).

We extend the attribute-related operations, and introduce new operations to

handle the pair-wise occlusion relationships: filter_occludee which filters

the entities that are being occluded, relate_occluding which finds the enti-

ties that are occluded by the given entity, and relate_occluded which finds

the entities that are occluding the given entity. Using these operations, 35

templates are collected to generate the occlusion questions.

4.4 Method

In this section, we introduce PO3D-VQA, which is a parse-then-execute modu-

lar model for 3D-aware VQA. The overview of our system is shown in Fig. 4.2.

We first parse the image into a scene graph representation that is aware of

3D information like object parts, 3D poses and occlusion relations, then we

parse the question into a reasoning program and execute the program on
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filter(plane)

part_to_obj

filter(wing)

filter_occluded

obj_to_part
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Execution

Question: What is the size of the 
plane whose wing is occluded?

Answer: small
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CNN

diff. render
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reconstructed feat.
score map
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greedy proposal generation
attribute/part prediction

Image

car

Figure 4.2: An overview of our model PO3D-VQA. The image is parsed into 3D-aware
scene representations (blue box) using our proposed scene parser based on the idea of
render-and-compare (green box). The question is parsed into a program composed of
reasoning operations (orange box). Then the operations are executed on the 3D-aware
scene representations to predict the answer.

the derived scene representations in a probabilistic manner. In Sec. 4.4.1, we

define the scene representation required; in Sec. 4.4.2, we describe how we

parse the image into the scene representation based on a multi-class 6D pose

estimation model with non-trivial extensions; in Sec. 4.4.3, we describe how

the question is executed on the derived scene representation to predict the

answer.

4.4.1 3D-aware scene representation

Given an input image I, we parse it into a 3D-aware scene representation R

that contains the objects (O) with attributes (Ao), the parts (P) with attributes

(Ap), the hierarchical relationships between objects and parts (H), and the

occlusion relationships between them (S). The attributes include the 3D
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poses and locations of objects or parts, as well as their colors, materials, and

sizes. The scene representation R = {O, P, Ao, Ap, H, S} is comprehensive

and therefore we can directly execute the symbolic reasoning module on this

representation without taking into account the image any further.

In more detail, objects are represented as a matrix O ∈ Rn×Nobj containing

the probability scores of each object being a certain instance, where n is the

number of objects in the given image and Nobj is the number of all possible

object categories in the dataset (i.e. vocabulary size of the objects). Similarly,

parts are represented as P ∈ Rp×Nprt , where p is the number of parts in the

image and Nprt is the vocabulary size of the object parts. The object-part

hierarchy is represented by a binary matrix H ∈ Rn×p, where Hij = 1 if the

object i contains the part j or Hij = 0 otherwise. The attributes Ao ∈ Rn×Natt

and Ap ∈ Rp×Natt containing probability scores of each object or part having

a certain attribute or the value of bounding box. Here Natt is the number of

attributes including the 3D poses, location coordinates, colors, materials and

sizes. Occlusion relationships are represented by S ∈ R(n+p)×n, where each

element Sij represents the score of object (or part) i being occluded by object j.

4.4.2 Multi-class 6D Scene Parsing

While most existing VQA methods [50, 76] encode the image using pretrained

object detectors like Faster-RCNN [108], we build our 6D-aware scene parser

in a different way, based on the idea of analysis-by-synthesis through inverse

rendering [122] which has the following advantages: first, the model predic-

tion is more robust [122] as the render-and-compare process can naturally
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integrate a robust reconstruction loss to avoid distortion through occlusion;

second, while the object parts are usually very challenging for Faster-RCNN

to detect due to their small size, they can be much easier located using the

3D object shape, by first finding the object and estimating its 3D pose, and

subsequently locating the parts using the 3D object shape (as shown in our

experimental evaluation).

However, we observe two open challenges for applying existing 6D pose

estimators that follow a render-and-compare approach [118, 122]: (a) these

pose estimators assume that the object class is known, but in Super-CLEVR-3D

the scene parser must learn to estimate the object class jointly with the pose;

and (b) the scenes in Super-CLEVR-3D are very dense, containing multiple

close-by objects that occlude each other. In order to address these two chal-

lenges, we introduce several improvements over [118] that enable it to be

integrated into a 3D-aware VQA model.

In the following, we first describe neural meshes [122, 118], which were

proposed in prior work for pose estimation of single objects following an

analysis-by-synthesis approach. Subsequently, we extend this method to

complex scenes with densely located and possibly occluded objects to obtain

a coherent scene representation, including object parts and attributes.

Preliminaries. Our work builds on and significantly extends Neural

Meshes [118] that were introduced for 6D pose estimation through inverse

rendering. The task is to jointly estimate the 6D pose (2D location, distance

to the camera and 3D pose) of objects in an image. An object category is rep-

resented with a category-level mesh [122] My = {vn ∈ R3}N
n=1 and a neural
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Figure 4.3: Visualization of intermediate steps in our scene parser. Given an image (a),
per-category feature activation maps (shown in II) are computed through render-and-
compare. Then the category-wise competition (3D-NMS) is performed (results shown
in b) and a post-filtering step is taken to remove mis-detected objects (c). Based on
the pose estimation results (d), we project the 3D object mesh back onto the image to
locate parts and occlusions(e).

texture Ty ∈ RN×c on the surface of the mesh My, where c is the dimension of

the feature and y is the object category. Given the object 3D pose in camera

view α, we can render the neural mesh model Oy = {My, Ty} into a feature

map with soft rasterization [123]: Fy(α) = R(Oy, α). Following prior work

in pose estimation [122] we formulate the render-and-compare process as an

optimization of the likelihood model:

p(F | Oy, αy, B) = ∏
i∈FG

p( fi | Oy, αy) ∏
i∈BG

p( f ′i | B) (4.1)

where FG and BG are the set of foreground and background locations on the

2D feature map and fi is the feature vector of F at location i. Here the fore-

ground and background likelihoods are modeled as Gaussian distributions.

To train the feature extractor Φ, the neural texture {Ty} and the back-

ground model B jointly, we utilize the EM-type learning strategy as originally
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introduced for keypoint detection in CoKe[124]. Specifically, the feature ex-

tractor is trained using stochastic gradient descent while the parameters of the

generative model {Ty} and B are trained using momentum update after every

gradient step in the feature extractor, which was found to stabilize training

convergence.

At inference time, the object poses α can be inferred by minimizing the

negative log-likelihood w.r.t. the 3D pose α using gradient descent [118].

Multi-object competition with 3D-NMS. We extend Neural Meshes to

predict the 6D object pose and class label in complex multi-object scenes.

In particular, we introduce 3D-Non-Maximum-Suppression (3D-NMS) into

the maximum likelihood inference process. This introduces a competition

between Neural Meshes of different categories in explaining the feature map.

In contrast to classical 2D-NMS, our 3D-NMS also takes into account the

distance of each object to the camera and hence naturally enables reasoning

about occlusions of objects in the scene.

We denote the 6D pose as γ = {x, l}, where x = {α, β} represents the

3D object pose α and object distance to the camera β, and l is the 2D object

location in the feature map. We first detect the 6D poses of each object category

independently and apply 2D-NMS such that for each 2D location l′ in a

neighborhood defined by radius r, the predicted 6D pose {x, l} yields the

largest activation:

max
x

p(F | x, l) s.t. p(F | x, l) > p(F | x, l′), ∀l′ ∈ {l′ | 0 < |l′ − l| < r}
(4.2)

We enable multi-category 6D pose estimation by extending this formulation to
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a 3D non-maximum suppression (3D-NMS). Using Y to represent the set of all

object categories, we model the category label y from a generative perspective:

max
x

p(F | x, l, y) s.t. p(F | x, l, y) > p(F | x, l′, y), ∀l′ ∈ {l′ | 0 < |l′ − l| < r}
(4.3)

and p(F | x, l, y) > p(F | x, l, y′), ∀y′ ̸= y ∈ Y (4.4)

Dense scene parsing with greedy proposal generation. Typically, object

detection in complex scenes requires well chosen thresholds and detection

hyperparameters. Our render-and-compare approach enables us to avoid

tedious hyperparameter tuning by adopting a greedy approach to maximize

the model likelihood (Eq. (4.1)) using a greedy proposal strategy. In particular,

we optimize the likelihood greedily by starting from the object proposal

that explains away the most parts of the image with highest likelihood, and

subsequently update the likelihood of the overlapping proposals taking into

account, that at every pixel in the feature map only one object can be visible

[125]. Formally, given a list of objects proposals {oi = (Oy,i, αy,i)}k
i=1 (with

predicted category label y and 6D pose α), we first order the object proposals

based on their likelihood score s = p(F|oi, B) such that si ≤ sj for i < j. Based

on the ordering, we greedily update the 6D pose αj and the corresponding

proposal likelihood for object oj by masking out the foreground regions of

previous objects oi with 1 ≤ i ≤ j − 1. In this way, we can largely avoid

missing close-by objects or duplicated detection.

Part and attribute prediction. Given the predicted location and pose of

each object, we project the object mesh back onto the image to get the locations
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for each part. To predict the attributes for the objects and parts, we crop

the region containing the object or part from the RGB image, and train an

additional CNN classifier using the cropped patches to predict the attributes

(color, size, material) and the fine-grained classes (i.e. different sub-types of

cars) of each patch using a cross-entropy loss. The reason why this additional

CNN classifier is needed instead of re-using the features from the 6D pose

estimator is that the pose estimation features are learned to be invariant to

scale and texture changes, which makes it unsuitable for attribute prediction.

Post-filtering. Finally, we post-process the located objects using the fine-

grained CNN classifier. We compare the category labels predicted by the 6D

pose estimator with the ones predicted by the CNN classifier, and remove the

objects for which these two predictions do not agree. This post-filtering step

helps with the duplicated detections that cannot be fully resolved with the

3D-NMS.

Summary. Fig. 4.2 provides an overview of our scene parser and Fig. 4.3 vi-

sualize the intermediate results. With the idea of render-and-compare (shown

in the green box of Fig. 4.2), the model first computes an activation map for

each possible object category (Fig. 4.3II). Next, to infer the category for each

object, the category-wise competition 3D-NMS is performed (Fig. 4.3b) and a

post-filtering step is taken to remove mis-detected objects (Fig. 4.3c). Fig. 4.3d

shows the 6D pose estimation results. To predict parts, we project the 3D object

mesh back onto the image to locate parts based on projected objects (Fig. 4.3e).

In this way, the input image can be parsed into a 3D-aware representation,

which is ready for the question reasoning with program execution.
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4.4.3 Program execution

After the 3D-aware scene representations are predicted for the given image,

the question is parsed into a reasoning program, which is then executed on

the scene representation to predict the answer. The question parsing follows

previous work [55], where a LSTM sequence-to-sequence model is trained

to parse the question into its corresponding program. Like P-NSVQA [105],

each operation in the program is executed on the scene representation in a

probabilistic way. In the following, we describe the execution of the new

operations we introduced.

The part-related operators are implemented by querying the object-part hi-

erarchy matrix H, so that the object containing a given part (part_to_object)

and the parts belonging to the given object (object_to_part) can be deter-

mined. The pose-related operators are based on the estimated 3D pose in the

object attributes Ao. For the filter and query operations regarding pose, the

3D poses are quantified into four direction (left, right, front, back). For the

pair-wise pose relationships, the azimuth angle between two objects is used to

determine the same/opposite/vertical directions. The occlusion-related oper-

ations are implemented by querying the occlusion matrix S. Based on the oc-

clusion scores Sij representing whether entity i being occluded by entity j, we

can compute the score of one entity being occluded ∑j Sij (filter_occludee),

find the entities that occlude a given entity (relate_occluded), or find the

entities that are occluded by a given entity (relate_occluded).
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4.5 Experiments

4.5.1 Evaluated methods

We compare our model with three representative VQA models: FiLM [56],

mDETR [57], and PNSVQA [105]. Additionally, we introduce a variant of

PNSVQA, PNSVQA+Projection, to analyze the benefit of our generative 6D

pose estimation approach.

FiLM [56] Feature-wise Linear Modulation is a representative two-stream fea-

ture fusion method. The FiLM model merges the question features extracted

with GRU [103] and image features extracted with CNN and predicts answers

based on the merged features.

mDETR [57] mDETR is a pretrained text-guided object detector based on

transformers. The model is pretrained with 1.3M image and text pairs and

shows strong performance when finetuned on downstream tasks like referring

expression understanding or VQA.

PNSVQA [105] PNSVQA is a SoTA neural symbolic VQA model. It parses

the scene using MaskRCNN [104] and an attribute extraction network, then

executes the reasoning program on the parsed visual scenes with taking into

account the uncertainty of the scene parser. To extend PNSVQA to the 3D

questions in Super-CLEVR-3D, we add a regression head in the attribute

extraction network to predict the 3D posefor each object; parts are detected

in a similar way as objects by predicting 2D bounding boxes; the part-object

associations and occlusions are computed using intersection-over-union: a

part belongs to an intersected object if the part label matches the object label,
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otherwise it is occluded by this object.

PNSVQA+Projection Similar with NSVQA, this model predicts the 6D

poses, categories and attributes using MaskRCNN and the attribute extraction

network. The difference is that the parts and occlusions are predicted by

projecting the 3D object models onto the image using the predicted 6D pose

and category (same with how we find parts and occlusions in our model).

This model helps us ablate the influence of the two components in our model,

i.e. 6D pose prediction by render-and-compare, and part/occlusion detection

with mesh projection.

4.5.2 Experiment setup

Dataset. Our Super-CLEVR-3D dataset shares the same visual scenes with

Super-CLEVR dataset. We re-render the images with more annotations

recorded (camera parameters, parts annotations, occlusion maps). The dataset

splits follow the Super-CLEVR dataset, where we have 20k images for training,

5k for validation, and 5k for testing. For question generation, we create 9

templates for part questions, 17 templates for pose questions, 35 templates for

occlusion questions (with and without parts). For each of the three types, 8

to 10 questions are generated for each image by randomly sampling the tem-

plates. We ensure that the questions are not ill-posed and cannot be answered

by taking shortcuts, i.e. the questions contain no redundant reasoning steps,

following the no-redundancy setting in [105]. More details including the list

of question templates can be found in the Appendix.
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Table 4.1: Model accuracies on the Super-CLEVR-3D testing split, reported for each
question type, i.e. questions about parts, 3D poses, occlusions between objects, occlu-
sions between objects and parts.

Mean Part Pose Occ. Part+Occ.

FiLM [56] 50.53 38.24 67.82 51.41 44.66
mDETR [57] 55.72 41.52 71.76 64.99 50.47
PNSVQA [105] 64.39 50.61 87.78 65.80 53.35

PNSVQA+Projection 68.15 56.30 86.70 70.70 58.90

PO3D-VQA (Ours) 75.64 71.85 86.40 76.90 67.40

Implementation details. We train the 6D pose estimator and CNN at-

tribute classifier separately. We train the 6D pose estimator (including the

contrastive feature backbone and the nerual mesh models for each of the 5

classes) for 15k iterations with batch size 15, which takes around 2 hours

on NVIDIA RTX A5000 for each class. The attribute classifier, which is a

ResNet50, is shared for objects and parts. It is trained for 100 epochs with

batch size 64. During inference, it takes 22s for 6D pose estimation and 10s

for object mesh projection for all the objects in one image. During inference

of the 6D pose estimator, we assume the theta is 0. During 3D NMS filtering,

we choose the radius r as 2, and we also filter the object proposals with a

threshold of 15 on the score map.

4.5.3 Quantitative Results

We trained our model and baselines on Super-CLEVR-3D’s training split,

reporting answer accuracies on the test split in Tab. 4.1. Accuracies for each

question type are detailed separately.

Comparison with baselines. First, among all the baseline methods, the

77



neural symbolic method PNSVQA performs the best (64.4% accuracy), outper-

forming the end-to-end methods mDETR and FiLM by a large margin (> 8%).

This shows the advantage of the step-wise modular reasoning procedure,

which agrees with the findings in prior works that the modular methods excel

on the simulated benchmarks that require long-trace reasoning. Second, our

model achieves 75.6% average accuracy, which significantly outperforms all

the evaluated models. Especially, comparing our PO3D-VQA with its 2D

counterpart NSVQA, we see that the injection of 3D knowledge brings a large

performance boost of 11%, suggesting the importance of the 3D understand-

ing.

Comparison with PNSVQA variants. By analyzing the results of PNSVQA

variants (PNSVQA, PNSVQA+Projection, and our PO3D-VQA), we show (a)

the benefit of estimating object 3D poses using our analysis-by-synthesis

method over regression and (b) the benefit of object-part structure knowl-

edge. First, by detecting part using 3D model projection, PNSVQA+Projection

improves the PNSVQA results by 4%, which indicates that locating parts

based on objects using the object-part structure knowledge is beneficial. Sec-

ond, by estimating object 6D poses with our generative render-and-compare

method, our PO3D-VQA outperforms PNSVQA+Projection by 7% (from 68.2%

to 75.6%), showing the advantage of our render-and-compare model. More-

over, looking at the per-type results, we find that the improvement of our

PO3D-VQA is most significant on the part-related questions (21% improve-

ment over PNSVQA) and part-with-occlusion questions (14%), while the

accuracy on pose-related questions does not improve. The reason is that part
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and occlusion predictions require precise pose predictions for accurate mesh

projection, while the pose questions only require a rough pose to determine

the facing direction.

4.5.4 Analysis and discussions

To further analyze the advantage of PO3D-VQA over other PNSVQA variants,

we compare the models on questions of different difficulty levels. It is shown

that the benefit our model is the most significant on hard questions. In Fig. 4.4,

we plot the relative accuracy drop 1 of each model on questions with different

occlusion ratios and questions with different part sizes.

(a) Pose wrt. Occlusion Ratio (b) Part wrt. Part Size (c) Part + Occlusion wrt. Part Size

PNSVQA+Projection PNSVQA

Figure 4.4: Analysis on questions of different difficulty levels. The plots show the
relative accuracy drop of models, on pose questions w.r.t. different occlusion ratios
(a), on part questions w.r.t. different part sizes (b), and on part+occlusion questions
w.r.t. different part sizes (c).

Questions with different occlusion ratios. We sort pose-related questions

into different sub-groups based on their occlusion ratios and evaluate the

models on each of the sub-groups. The occlusion ratio r of a question is the

minimum of occlusion ratios for all the objects in its reasoning trace. We choose

r from 0% to 30%, in increment of 5%. The results are shown is Fig. 4.4 (a).

1Relative accuracy drop means the ratio of absolute accuracy drop and the original accuracy.
For example, if a model’s accuracy drops from 50% to 45%, its relative accuracy drop is 10%.
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Our PO3D-VQA is much more robust to occlusions compared to the other

two methods: while the performances of all the three models decrease as the

occlusion ratio increases, the relative drop of ours is much smaller than others.

The results show that our render-and-compare scene parser is more robust to

heavy occlusions compared with the discriminative methods.

Questions with different part sizes. Questions about small parts are

harder than the ones about larger parts. We sort the questions into different

part size intervals (s, t), where the largest part that the question refers to has

an area (number of pixels occupied) larger than s and smaller than t. We

compare the models on the part questions and the part+occlusion questions

with different part sizes in Fig. 4.4 (b) and (c). In (b), the accuracy drop of

PO3D-VQA is smaller than PNSVQA+Projection and PNSVQA when parts

get smaller. In (c), PNSVQA+Projection is slightly better than our model and

they are both better than the original PNSVQA.

In summary, by sorting questions into different difficulty levels based on

occlusion ratios and part sizes, we show the advantage of our PO3D-VQA on

harder questions, indicating that our model is robust to occlusions and small

part sizes.

Qualitative results. Fig. 4.5 shows examples of predictions for our model

and PNSVQA variants. In (a), the question asks about occlusion, but with a

slight error in the pose prediction, PNSVQA+Projection misses the occluded

bus and predicts the wrong answer, while our model is correct with accurate

pose. In (b), the question refers to the heavily occluded minivan that is difficult

to detect, but our model gets the correct prediction thanks to its robustness to
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occlusions.

Q: What is the 
material of the gray 
object that is occluded?
A: rubber

Ours: rubber
PNSVQA+Proj: metal
PNSVQA: metal

Q: Which direction is 
the minivan facing?
A: left

Ours: left
PNSVQA +Proj.: right
PNSVQA: front

(a)

(b)

Ours PNSVQA+Projection

Figure 4.5: Examples of models’ predictions. Our model (a) predicts the object pose
accurately and (b) is robust to heavy occlusions. Red boxes are for visualization only.

Limitations and failure cases. Due to the difficulties of collecting real

images with compositional scenes and 3D annotations, our work is currently

limited by its synthetic nature. For PO3D-VQA, it sometimes fails to detect

multiple objects if they are from the same category and heavily overlap (see

Appendix D for more visualizations). 3D NMS can effectively improve the

dense scene parsing results when objects are from different categories, but

conceptually it is limited when objects are from the same category. However,

6D pose estimation in dense scenes is a challenging problem, whereas many

current works on 6D pose estimation are still focusing on simple scenes with

single objects [118, 126, 127].
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4.6 Further Discussion

In this section, we discuss two meaningful extensions of our work: the incorpo-

ration of z-direction questions and the application of our model to real-world

images.

Z-direction questions. While the proposed Super-CLEVR-3D dataset has

been designed with 3D-aware questions, all objects within it are placed on the

same surface. Introducing variability in the z direction can further enrich our

dataset with more comprehensive 3D spatial relationships.

We consider the scenario where aeroplane category, is in different eleva-

tions, introducing the z dimension into the spatial relationships (see Fig. 4.6).

This allowed us to formulate questions that probe the model’s understanding

of height relationships and depth perception. We create a subset containing

100 images and 379 questions and test our PO3D-VQA model directly on it

without retraining the 6D parser. On this dataset, our PO3D model achieves

90.33% accuracy on height relationship questions and 78.89% on depth-related

questions, suggesting that our model can successfully handle questions about

height. As the baseline models only use the bounding box to determine the

spatial relationship between objects, they are not able to determine the height

relationships.

Extension to real-world images While our PO3D-VQA model has demon-

strated impressive performance on the synthetic Super-CLEVR-3D dataset,

an essential research direction is extending it to real images or other 3D VQA

datasets (such as GQA and FE-3DGQA). However, it’s not trivial to truly

evaluate it on these real-world problems, and a primary challenge is the lack
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Figure 4.6: Example images and questions of objects with different elevations.

of 3D annotations and the highly articulated categories (like the human body)

in these datasets.

However, we show that our PO3D-VQA model can, in principle, work

on realistic images. We generate several realistic image samples manually

using the vehicle objects (e.g. car, bus, bicycle) from ImageNet with 3D

annotation (see Fig. 4.7) and real-image background. In this experiment, the

pose estimator is trained on the PASCAL3D+ dataset, and is used to predict

the poses of objects from the image before pasting, as shown in (b). The

attribute (color) prediction module is trained on Super-CLEVR-3D and the

object shapes are predicted by a ResNet trained on ImageNet. Our model

can correctly predict answers to questions about the object pose, parts, and

occlusions, e.g. “Which object is occluded by the mountain bike”.

Figure 4.7: Examples of results on realistic images. Given a realistic image (a1, a2),
our model can successfully estimate the 6D poses of objects (b1, b2) and answer the
3D-aware questions (c1, c2).
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4.7 Conclusion

In this chapter, we study the task of 3D-aware VQA. We propose the Super-

CLEVR-3D dataset containing questions explicitly querying 3D understanding

including object parts, 3D poses, and occlusions. To address the task, a 3D-

aware neural symbolic model PO3D-VQA is proposed, which enhances the

probabilistic symbolic model with a robust 3D scene parser based on analysis-

by-synthesis. With the merits of accurate 3D scene parsing and symbolic

execution, our model outperforms existing methods by a large margin. Further

analysis shows that the improvements are even larger on harder questions.

With the dataset, the model, and the experiments, we highlight the benefit of

symbolic execution and the importance of 3D understanding for 3D-aware

VQA.
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Part II

Compositional Models for Visual
Question Answering
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Chapter 5

Calibrating Concepts and
Operations: Towards Symbolic
Reasoning on Real Images

While neural symbolic methods demonstrate impressive performance in vi-

sual question answering on synthetic images, their performance suffers on

real images. We identify that the long-tail distribution of visual concepts and

unequal importance of reasoning steps in real data are the two key obsta-

cles that limit the models’ real-world potentials. To address these challenges,

we propose a new paradigm, Calibrating Concepts and Operations (CCO),

which enables neural symbolic models to capture underlying data character-

istics and to reason with hierarchical importance. Specifically, we introduce

an executor with learnable concept embedding magnitudes for handling dis-

tribution imbalance, and an operation calibrator for highlighting important

operations and suppressing redundant ones.

Our experiments show CCO substantially boosts the performance of neural

symbolic methods on real images. By evaluating models on the real world
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dataset GQA, CCO helps the neural symbolic method NSCL outperforms

its vanilla counterpart by 9.1% (from 47.0% to 56.1%); this result also largely

reduces the performance gap between symbolic and non-symbolic methods.

Additionally, we create a perturbed test set for better understanding and

analyzing model performance on real images. Code is available at https:

//github.com/Lizw14/CaliCO.git.

5.1 Introduction

Visual question answering aims to develop a model that can answer open-

ended questions from images. Currently, end-to-end methods, which directly

make predictions over dense visual and textual features [17, 23], represent the

most effective class of models for VQA. Nonetheless, such methods have been

criticized for exploiting shortcuts (e.g., statistical dataset bias [9, 10], question

prior [128] or isolated text and image elements [27]) to answer questions; these

shortcuts often make them unable to generalize well on out-of-domain data.

In contrast, neural symbolic methods [106, 129, 130, 131] are equipped

with strong reasoning ability, enabling them to answer multi-hop and com-

plex questions in a compositional and transparent manner—they first parse

each question into a program with a series of reasoning steps, and then com-

pose neural modules on the fly to execute the program on the image. While

symbolic methods achieve nearly perfect performance on synthetic dataset,

they perform poorly on real-world datasets. For instance, neural symbolic

concept learner (NSCL) [131] achieves 98.9% accuracy on the synthetic CLEVR

dataset [70], but only 47.0% accuracy on the real-world GQA dataset [59]. Note
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the original NSCL cannot be directly applied to GQA; this 47.0% accuracy is

obtained from our own re-implementation, where minimal but necessary mod-

ifications are made (e.g., adding in same and common modules), for making

models runnable on GQA.

Q: The cylinder that is the same size as 
the metallic sphere is what color? 
A: Purple
Prog: select(sphere) filter(metallic)  
samesize()    filter(cylinder)    querycolor()

Q: What does the little boy in front of the 
table hold?
A: Toothbrush
Prog: select(boy)    filter(little)   
relate_s(table, front)    query_rel_o(hold)

(a) Long-tail Concept Distribution of Real Dataset

Synthetic CLEVR dataset

Real GQA dataset

(b) Unequal Importance of Reasoning Steps

Figure 5.1: Statistics and examples from the synthetic CLEVR dataset and the real
GQA dataset. Compared to the synthetic dataset, VQA on real data needs to deal
with a long-tail concept distribution and the uneven importance of reasoning steps.

As summarized in Figure 5.1, we note there are two major differences be-

tween synthetic datasets and real-world datasets. First, while visual concepts

are well-balanced in the synthetic datasets, they follow a long-tail distribution

in real-world datasets. For example, as shown in Figure 5.1(a), in GQA, com-

mon concepts like “man”, “window”, “black”, “white” are far more frequent

than uncommon ones like “pink” and “eraser”, in both questions and answers.

Second, unlike in synthetic data, the reasoning steps on real data have varying

importance, mainly because of redundancy/over-specification in question

description. For example, as shown in Figure 5.1(b), in the question "What is

the little boy doing?", the noun (i.e., boy) itself is enough to select the person

being asked about while the adjective (i.e., little) only serves as a nuisance

factor.
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We identify that this mismatch of dataset characteristics is the main obsta-

cle for adapting neural symbolic methods from synthetic datasets to real-world

datasets. More concretely, we find that the original architecture designs of

neural symbolic methods (which were designed/verified mainly on synthetic

datasets) are no longer suitable for the real-world setting. For examples, as

shown in Section 5.3, even simple operations like removing the normalization

on concept embeddings or manually assigning larger weights to less discrimi-

native modules are effective to improve the performance of neural symbolic

methods on real images.

To better cope with real images, we propose Calibrating Concepts and Op-

erations (CCO), which enables neural symbolic methods to explicitly learn

weights for concept embedding and reason with contextual module impor-

tance. Specifically, CCO learns different concept embedding magnitudes for

each execution module, and learns an operation weight predictor to contex-

tually predict weights for each operation in the reasoning program. In this

way, the model will be able to handle unbalanced concept distributions and to

reason with varying operation importance.

Our empirical results show that CCO substantially boosts the applicability

of neural symbolic methods on real images. For example, on the real-world

GQA dataset, CCO outperforms the baseline NSCL by a large margin of 9.1%

(from 47.0% to 56.1%). Moreover, the proposed CCO method largely reduces

the performance gap between the symbolic method and the state-of-the-art

non-symbolic methods [2, 132] on real-world GQA dataset.
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Additionally, based on the proposed operation weight calibrator, we cre-

ate a perturbed test set by progressively removing the operations with low

weights from testing questions. Our purpose is to verify whether the learned

operation weights are able to highlight important operations and suppress

redundant ones, and simultaneously to access the robustness of different mod-

els regarding this operation information erasing. Our analysis reveals 1) GQA

questions contain superfluous information by way of over-specification and

2) the ability to effectively handle this extraneous information is crucial for

models to improve performance. We hope this perturbed test set will allow

researchers to better understand the compositionality of VQA questions and

to further improve symbolic reasoning over real images.

5.2 Related Work

Visual Question Answering [14] requires an understanding of both visual and

textual information. Pure deep learning methods that based on convolution,

LSTM and attention have achieved good performance. For example, Fukui

et al. [18] used multimodal compact bilinear pooling to combine visual and

language features into a joint representation. Yang et al. [17] used stacked

attention to refine the attended image region relevant to the question. Kim

et al. [23] proposed bilinear attention network to learn attention between

the two modalities with residual connections between multiple attention

maps. Yang et al. [133] proposed a tiered relational reasoning method that

dynamically attends to visual objects based on textual instruction. Visual

reasoning. Prior work has suggested that above mentioned VQA models
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may rely on dataset shortcuts and priors to predict answer [9, 10, 128, 28,

101, 134]. Therefore, recent efforts have focused more on visual reasoning

with complex compositional questions that requires multi-step reasoning

and true visual scene understanding. Johnson et al. [70] propose CLEVR

that requires reasoning over synthetic scenes with compositional questions

automatically generated using question templates. Hudson et al. [59] further

constructed GQA, a dataset with real images and procedurally generated

multi-step questions, for visual reasoning.

Attention is widely used in vision and language tasks, including image

captioning [135, 136, 137, 138], visual question answering [17, 23, 133], re-

ferring expressions [139, 140, 141]. It is shown effective in learning distinct

importance of images in an image group, of sub-regions over an image or of

words in a sentence. Our work calibrates different concepts and operations,

thus enabling the model to reason with weighted concepts and contextual

operation importance.

Neural symbolic methods. [142, 143, 144] show impressive reasoning

ability on abstract reasoning tasks like [85, 145]. For VQA, Andreas et al. [106]

propose neural modular networks, which decompose a question into a func-

tional program (reasoning steps) that can be executed by neural modules over

the image. This method is further improved by executing the functional pro-

gram explicitly [129, 146, 73, 132, 147] or implicitly [148, 107], manipulating

visual and textual features using convolution or dual attention. Specifically,

[130, 131, 149] propose a pure symbolic executor given pre-parsed or learned
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explicit programs, and achieve state-of-the-art performance on CLEVR. Relat-

edly, Amizadeh et al. [150] propose a symbolic reasoner based on first order

logic to diagnose reasoning behavior of different models. While symbolic

methods provide interpretable programs, their reasoning capacity on real data

is still limited [59]. Our work aims to reduce the performance gap between

symbolic and non-symbolic models on real data.

5.3 Motivation

In this section, we provide simple examples to demonstrate how the dataset

differences (between the synthetic CLEVR and the real GQA) affect the perfor-

mance of neural symbolic methods. Interestingly, we find that the traditional

design principles in neural symbolic methods, which are usually obtained

from synthetic datasets, may not be optimal for the real-world datasets.

5.3.1 Normalized Concept Embedding?

For neural symbolic methods, at each step of execution, a similarity score be-

tween each object embedding and the learned concept semantic embedding is

computed to select the target object that is being asked about (i.e., selecting the

object that is closest to the query concept) and to predict answers (i.e., selecting

the concept that is closest to the target object). By default, normalization is

applied to both object embedding and concept embedding.

Interestingly, on the real-world GQA, we find this default strategy is not

optimal; simply removing the normalization on concept embedding yields

substantially better performance (+3.4%). This phenomenon indicates that
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in addition to the angle alignment between object embedding and concept

embedding, the magnitude of concept embedding is also informative for

symbolic reasoning on real images.

We conjecture this is because the magnitude can represent the concept

distribution, which is drastically different between synthetic datasets and

real datasets. For example, while CLEVR contains only a relatively small

and perfectly-balanced set of concepts (i.e., 19 concepts including shapes,

materials), real datasets deal with thousands of concepts which are far more

complex and follows a long-tail distribution. We validate this hypothesis in

Section 5.6—with a learnable magnitude for each concept embedding, we

find its value is strongly correlated with concept frequency, i.e., more frequent

concepts tend to have larger magnitudes.

Question: Is there a bag in this image that is not black?
Groundtruth: No

(1) Select(bag) scores:

0 chair

1 headboard

3 light switch

2 bag

[−7.0, −6.0, 2.1, −9.9]
(2) Filter(not black) scores:

[0.8, −0.7, −1.7, 2.1]

Exist?
[−6.2, −5.3, 0.4, −7.8 ]

With weight: (1) + 2*(2)

Answer: Yes

[−5.4, −4.6, −1.3, −5.7 ]

Merge: (1) + (2):

Exist?
Answer: No

Figure 5.2: A failure case that can be corrected by re-weighting the operations. The
select(bag) operation overrides f ilter(not black), thus lead to incorrect answer. This
can be corrected by scaling up the result of f ilter operation.
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5.3.2 Module Re-weighting

In addition to this long-tailed distribution, the reasoning steps on real data

are of varying importance during execution. For example, in most cases,

the select(noun) module are more discriminative than the f ilter(attribute)

or the relate(relationship) operations, due to implicit entailment in natural

language and over-specification of the question (e.g., “little boy”, “trees below

the sky”). Therefore directly adapting symbolic methods to GQA will bias

the model towards putting more focus on learning discriminative operations

while neglecting the rest, resulting in errors on questions where all operations

are important. For example, in Figure 5.2, the question asks for a bag that

is not black; but select(bag) operation produces large values, overriding the

f ilter(not black) step, leading to a “yes" answer, even though the bag is not in

the required color.

Surprisingly, in this example, if we simply magnify the output of f ilter(not black)

operation by a factor of 2, the f ilter operation then can successfully rule out

the black bag, thus correctly answering the question. This result suggests

that, while many questions contain redundant operations that the model

tends to overlook, correctly re-weighting the operations is crucial for symbolic

reasoning on real images.

5.4 Calibrating Concepts and Operations

Given the observations in Section 5.3, we next explore designing more sophis-

ticated algorithms for automatically and effectively dealing with the complex
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characteristics of real data (e.g., long-tailed distribution and unequal reason-

ing steps), for the purpose of increasing neural symbolic methods’ real-world

applicability.

5.4.1 Formulation

In symbolic reasoning, a parser first parses a question Q =< ŵ1, ..., ŵl > into a

tree-structured functional program P. The program P consists a set of modules

< p1, ..., pm > with dependency relationships between each other. As the

functional program is either a chain or a binary tree, it can be linearized into

sequence by pre-order traversal. Each operation p has its type pt (e.g., select,

f ilter), attribute pa (e.g., color, material) and concept pc (e.g., red, plastic). We

denote the total number of module types, attributes and concepts as nt, na, nc,

respectively. Then execution modules are composed on the fly, based on

this generated program P. The module outputs are merged based on their

dependency relationship and fed into the final module to get the answer a.

For scene representation, we first obtain a set of feature vectors vi ∈ Rd

from the image I, with n objects detected in the image. Specifically, the

feature vector v can be either visual features obtained from Faster RCNN

[108], or the symbolic representation for each object (which can be obtained

by concatenating distributions over Nc object categories and Na attributes).

5.4.2 Basic Executor Architecture

Given the program P, the executor then executes it over input scene represen-

tations v to get a reasoning answer a. The basic executor principle follows the
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horse
spectator

hurdle
……

Scene Representation

Question: How is the animal to the 
left of the spectators called? 

Program

LSTM

Select

Relate

Query

Object embeddings

Concept embedding

Semantic Repr.

Positional Repr.

𝑑

∗ 𝑤!

∗ 𝑤"

𝑑

Answer: horse

Executor
Operation Weight Predictor

MLP

MLP

gate

Faster-RCNN

𝑤 ∗Learnable 
concept 
weight 

(𝑝!, 𝑝", … , 𝑝#)

Select[name]
(animal)

Select[name](spectator)

Query(name)

Relate_s(left)

Select ∗ 𝑤$

𝑴𝒂𝒕𝒕𝒓

Figure 5.3: Overview of our method. We first parse the image into a symbolic scene
representation in the form of objects and attributes, then parse the question into a
program. In each reasoning step, a reasoning module takes in the scene representation
and the instruction from the program, and outputs a distribution over objects. The
Operation Weight Predictor predicts a weight for each reasoning module, which
will be used to merge module outputs based on the program dependency. The final
distribution is fed into the output module to predict answers.

design in [131].

As shown in Figure 5.3, each module (except for the output module)

produces a distribution d over N objects in the image (d ∈ RN), which are

then merged based on their dependencies. In contrast to the default setup

in the synthetic dataset, we use the mean operation (rather than minimum

as in NSCL) to merge the module results due to its more stable training

behavior. Finally, the output module takes in the object distribution produced

by intermediate modules and queries/verifies the specified attribute of the

selected object.

For module design, a semantic embedding c is learned for each concept

96



(e.g., man, red, round, etc). Without loss of generality, we illustrate the com-

putation for select and query modules. The architecture of the other module

types can be found in supplementary materials.

We take the module select[name](spectator) as an example. First, a small

network Mname maps each object representation vi into the concept embed-

ding space, and then the similarity si between the embedded object represen-

tation ei and the embedding of concept “spectator” (cspectator) is computed.

This similarity si can be interpreted as the likelihood of each object being

“spectator". The computation of select module can be summarized as the

following:

ei = Mattr(vi) (5.1)

si = sim(ei, ccept) (5.2)

dselect = [s1, s2, ..., sN] (5.3)

where cosine similarity, i.e., dot product of normalized e and c, is used for

similarity computation.

The detailed network architecture of the representation mapping network

Mattr is shown in Figure 5.3. It gates the input object representation and

passes it through a MLP to get the corresponding semantic embedding. The

semantic embedding is then added with spatial embedding to get the final

object embedding. The mapping networks M corresponding to different

attributes share the same network architecture but with different weights.

We also briefly summarize the computation of query module below, as
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another example:

ei = Mattr(vi) (5.4)

e = d · [e1, e2, ..., eN] (5.5)

aj = sim(e, cj) (5.6)

where the operation · refers to element-wise multiplication between two

vectors, and cj refers to the concept embedding of possible answers.

5.4.3 Calibrating Concepts and Operations

We hereby formally propose Calibrating Concepts and Operations (CCO), which

includes a concept calibration module and an operation calibration module,

to help neural symbolic methods improving their applicability on real images.

The overall design is illustrated in Figure 5.3.

Calibrating concepts. As diagnosed in Section 5.3, the magnitude of

concept embedding c is informative for measuring the similarity between

the object embedding and concept embedding. This motivates us to design

an extra architectural element for explicitly capturing such information in

magnitudes. Moreover, this designed architectural element is expected to be

adaptive for different concepts, as each distinct type of operation is dealing

with varying concept frequency distributions. For example, general concepts

like “person” are common in select module, but not in query as the answers

usually expect more specific concepts.

98



In light of these intuitions, we offer a simple solution—explicitly learning

different embedding magnitudes for each module type. We expect the learned

norm sizes can encode the concept distribution, thus more frequent concepts

have larger norms sizes, leading to larger similarity values. Concretely, we

calibrate concept embeddings by:

cconcept = wtype
conceptcconcept (5.7)

where w is different for each module type and each concept. This is applied

whenever concept embeddings are used for similarity computation (e.g. in

Equation 5.2). To this end, distinct types of modules share the same concept

embedding direction, but varying magnitudes, corresponding to different

concept distributions.

Calibrating operations. As shown in Section 5.3, on real images, it is

important to enable the model to reason with different operation importance.

To this end, we propose to customize the weight of each operation in the

program. Specifically, a bi-directional LSTM weight predictor is used here to

predict operation weights based on the whole program. For each operation pi

in the program, its weight wi is computed as following:

ei = [et
i ; ea

i ; ec
i ] (5.8)

h1, ..., hm = LSTM(e1, ..., em) (5.9)

wi = sigmoid(Whi) (5.10)

where m is the program length. The inputs e to LSTM is the concatenation of
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the operation type embedding et, the attribute embedding ea and the concept

embedding ec. The predicted operation weights are then used to merge

outputs of the operations with a weighted-sum operation:

di = ∑
j∈D(pi)

wjdj (5.11)

where D(pi) is the set of dependency operations of operation pi. In this way,

operations with higher weights play a more important role in the merging

step.

Summary. With the proposed CCO, neural symbolic executor now is

able to capture the underlying data characteristics and reason with learn-

able operation importance. As we will next show, CCO substantially boosts

model performance on GQA, meanwhile largely reduces the performance gap

between symbolic and non-symbolic methods.

5.5 Experiments

5.5.1 Dataset and Experiment Setup

Dataset. Our experiments are on GQA [59], which is a dataset focusing on

reasoning and compositional question answering over real images. Building

on top of Visual Genome dataset [79], it contains more than 110K images

and 22M questions. Each image is annotated with a scene graph cleaned

from Visual Genome that contains the information of objects, attributes and

relationships. Each question comes with a corresponding functional program

that specifies reasoning steps. By default, we use its balanced version with
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943k, 132k, 13k and 95k questions in train, val, testdev and test split for

training and evaluating.

Scene representation. We train a Faster RCNN with an additional attribute

head using cross entropy loss following [50]. We train with 1313 object classes

(lemmatized and with plurals removed) and 622 attributes. The model gets

24.9 mAP for object detection and 17.1 groundtruth attribute average rank.1

The 1935-d concatenation of class and attribute scores are used as symbolic

scene representation.

Implementation details. The inner dimension of our model is 300. The

concept embedding is initialized using GloVe embedding [52]. We train our

reasoning model using the Adam optimizer with an initial learning rate of

0.0005 and a batch size of 256. Linear learning rate is used with 2000 warm-up

steps. We train the model for a total of 30 epochs, with early stopping (based

on accuracy on the balanced testdev split) to prevent overfitting. To avoid

confounding caused by parsing errors, we use gold programs to analyze the

execution performance by default.

5.5.2 Execution Results

We choose NSCL [131] as our baseline model. By default, concept embeddings

are normalized before similarity computation (cosine similarity) and operation

results are merged by taking the average. After appplying minimal but

necessary changes to NSCL for making it runnable on GQA, it achieves 47.01%

1Attribute prediction is evaluated by the average rank of groundtruth attribute in all
the 622 attributes. We only consider the correctly detected objects (IOU>0.5) for attribute
evaluation.
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Concept Operation Acc.

1 (Baseline) Normalized Average 47.01
2 Normalized Calibrated 51.30
3 Unnormalized Calibrated 54.65
4 (Ours) Calibrated Calibrated 56.13

Table 5.1: Accuracy comparison on the balanced GQA testdev split. Compared to the
baseline, both concept calibration and operation calibration substantially improve
model performance. The best performance is achieved by calibrating both concept
and operation.

accuracy. We then integrate the proposed concept and operation calibration

strategies on top of this baseline, while keeping other settings unchanged.

As shown in the fourth row of Table 5.1, CCO helps the baseline gain a

substantial improvement, i.e., the accuracy is increased from 47.01% to 56.13%.

This 9.12% improvement margin in accuracy demonstrates the effectiveness

of our proposed method.

To further analyze the improvement brought by each individual compo-

nent, we progressively add in our proposed concept calibration and operation

calibration into the NSCL baseline. As shown in the second row of Table 5.1

where the operation calibration is added, it outperforms the baseline by 4.29%,

demonstrating the effectiveness of operation calibration. We then remove the

normalization of concept embeddings and keep the embedding magnitudes

when computing similarity. As shown in the third row of Table 5.1, such

strategy successfully leads to an additional 3.35% improvement. This result

suggests that the embedding magnitudes are informative, which is consistent

with our analysis in Section 5.3.1. In summary, these results support that

both concept weighting and operation weighting are useful for improving the
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NSCL baseline.

5.5.3 Ablations

Scene representations. Regarding scene representations, besides using sym-

bolic representations, we also test model performance with other alternatives.

To validate the correctness of our model design, we feed the operation mod-

ules with gold scene representation. Our CCO achieves 89.61% accuracy,

which is similar to human performance (89.30%). This high upper bound

indicates that model performance can be further improved by better visual

perception.

We also examine the model performance by using visual features (Faster-

RCNN feature after mean-pooling) as scene representation. Our CCO achieves

53.00% accuracy, where the 3.13% performance gap (i.e., 53.00% vs. 56.13%)

shows the advantage of the abstract symbolic scene representation over the

dense visual features.

Program parsing. In all previous experiments, we apply gold program

for facilitating performance analysis. While in this part, we now examine

the model performance in the wild, i.e., gold program is no longer available.

In order to parse the question into functional program, we apply MISO, a

popular sequence-to-graph parser used for parsing in a number of graph-

based formalisms [151, 152, 153]. Different from simple sequence-to-sequence

parser as in [129] that can only handle program with one argument, or the two-

stage parser as in [147] that handles multiple arguments by hard constraints,

MISO can automatically handle multiple arguments by treating the program
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as a graph. The inputs to the MISO parser are word embedding sequences

and output is a pre-order traversal of a program trees.

We present the parsing results in Table 5.2. We use exact match score,

which is calculated by the percentage of predicted programs that exactly

match the gold program, for measuring the quality of the predicted program.

Our parser outperforms the parser in MMN [147] by a large margin of 6.05%

in terms of exact match score. Nonetheless, interestingly, we find final model

accuracy is less impacted by the quality of program—by executing either ours

or MMN’s predicted program, the difference in the final model accuracy is

only 0.1%. This seemly “frustrating” result may suggest the performance of

other components in current neural symbolic methods are severely lagged

behind therefore are not able to cope with the advances brought by our strong

parser.

Model Exact match Acc.
MMN [147] 85.13 54.01
Ours 91.18 54.11

Table 5.2: Parsing performance on testdev_balanced split, measured by exact match
score and execution accuracy.

Method Acc Binary Open Const. Plaus. Valid. Dist.

Non-Symbolic
LXMERT [2] 60.33 77.16 45.47 89.59 84.53 96.35 5.49
NSM [132] 63.17 78.94 49.25 93.25 84.28 96.41 3.71
MMN [147] 60.83 78.90 44.89 92.49 84.55 96.19 5.54

Symbolic ∇-FOL [150] 54.76 71.99 41.22 84.48 - - -
CCO (ours) 56.38 74.83 40.09 91.71 83.76 95.43 6.32

Table 5.3: Comparison with state-of-the-art symbolic and non-symbolic methods on
the official testing split.
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Comparing to the state-of-the-arts. To fairly compare different methods

on GQA, we follow the training setups in [150, 147] where we first train the

model on unbalanced training split then finetuned on balanced training split.

Gold programs are used for training while parser predicted programs are

used for evaluation. Performance is reported using the official evaluation

metrics, including overall accuracy, accuracy on binary questions, accuracy

on open questions, consistency, plausibility, validity and distribution.

We consider three non-symbolic methods (i.e., LXMERT [2], NSM [132],

MMN [147]) and one symbolic method (i.e., ∇-FOL [150]) for performance

comparison. In short, LXMERT is a representative multi-modal pretraining

method; NSM is a graph-based model that achieves state-of-the-art perfor-

mance on GQA; MMN is a modular method but is still based on dense features

manipulation; ∇-FOL2 is a symbolic method based on first order logic and

contextual calibration. We summarize the model performance on the held-out

test split in Table 5.3.

Compared to the previous state-of-the-art symbolic method ∇-FOL, our

proposed CCO surpasses it by 1.58% in terms of accuracy. Moreover, as shown

in Table 5.3, we note the performance gain over ∇-FOL is mainly on the binary

questions (+2.84) and on predicting consistent answers for different questions

(+7.2%).

We next compare with the state-of-the-art non-symbolic methods. Though

our model still has lower accuracy than these non-symbolic methods, we

note their performance on consistency, plausibility and validity is on a par

2∇-FOL does not report full result on the official test split, therefore results on balanced
testdev split is shown for comparison.
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with each other. We conjecture this is due to the symbolic nature of our

model, i.e., the proposed CCO execute strictly according to the program, thus

answers are plausible and valid, and questions with same underlying program

get consistent answer. These results suggest that the proposed CCO largely

reduces the performance gap between symbolic and non-symbolic methods

on the real-world GQA dataset.

5.6 Analysis

5.6.1 Learned Embedding Magnitudes

To verify our motivation that the learned concept embedding magnitudes

are informative for representing the unbalanced concept distribution in real

dataset, we visualize the correlation between concept counts and their mag-

nitude after calibration (in query module), i.e., ∥cconcept∥2 after calibration in

Equation 5.7. In the plot, X-axis is the count of concepts in query module

(taking log), and Y-axis is the learned magnitude of concept embeddings.

As verified in Figure 5.4, more frequent concepts consistently learn larger

magnitudes, while less frequent concepts generally have smaller magnitudes.

With larger magnitudes, the frequent concepts will produce values with higher

confidence when computing similarity in the output of each module. Another

interesting observation is that the magnitudes for few-shot concepts are not

very consistent (i.e., have larger variance), which is possibly caused by the

insufficient number of training examples.
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Figure 5.4: A positive correlation between learned embedding magnitude and concept
frequency confirms our motivating intuition: more frequent concepts have larger
magnitudes.

5.6.2 Perturbed Test Set

We create a perturbed testing data splits for the following purposes: a) we

want to validate that proposed operation weighting strategy predicts larger

weights for more important operations and smaller weights for unimportant

ones; b) we need a test set for better studying the question over-specification

in GQA dataset; and c) we aim to benchmark behavior of symbolic and non-

symbolic methods in terms of how much information in the over-specified

operations can be effectively utilized.

Specifically, this perturbed test set is created using the operation weights

predicted by the learned LSTM operation weight predictor. We perturb the

functional programs in balanced testdev splits by progressively removing the

removable operations with smaller predicted weights3. Note that removable

3We set the weight thresholds to be −∞, −2, −1, −0.5, 0, +∞; resulting in removing 0%,
14%,31%,70%, 90%, 100% of removable operations, respectively
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operations here refer to the intermediate operations that can be removed with-

out syntactically breaking the programs, i.e., f ilter, relate and their dependent

operations. Then, we train a simple sequence-to-sequence generator to recover

questions from the perturbed programs.

Figure 5.5: Accuracy drop of different models when the testing questions are progres-
sively perturbed by removing reasoning operations with low weights.

The results are shown in Figure 5.5. We test five methods, including non-

symbolic method LXMERT [2], symbolic method ∇-FOL [150], its variant

∇-FOL-NC which is a pure reasoner based on first order logic, our model, and

ours without operation calibrating.4 Our observations can be summarized as

the following:

Validity of operation weights. All curves exhibit a sharper decrease at the

end when more operations with higher weights are removed. In other words,

the removal of operations with larger predicted weights will result in bigger

negative influence on model accuracy. This validates the predicted weights

4Original accuracy of the five models (LXMERT, ∇-FOL, ∇-FOL-NC, ours, and ours w/o
OC) are 58.13, 54.02, 51.86, 56.13, 55.49, respectively.
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correctly represent operation importance.

Question over-specification. From the curves, we note while 59.0% ques-

tions in the balanced testdev split contain removable operations and are

perturbed, less then 3.0% questions are incorrectly answered after removing

those modules. This phenomenon suggests that for most questions in GQA

dataset, the f ilter and relate operations are not necessary for figuring out the

answer, i.e., removing all the intermediate attributes and relationships from

questions does not change the answer for most of the questions.

Effectiveness of operation weighting. Interestingly, the performance of

the pure logic reasoner ∇-FOL-NC and our model without operation weight-

ing sees a slight increase when removing a small amount of operations. This

phenomenon indicates that those operations are hard for models to learn

thus can even derail the model predictions. This verifies our motivation for

designing operation calibration as it helps the learning of f ilter and relate

modules.

Comparison of symbolic and non-symbolic methods. Compared to sym-

bolic methods, non-symbolic methods have larger accuracy drops, therefore

indicating they can more effectively utilize the information in adjectives and

relationships. Moreover, methods with higher performance tend to have

larger decrease when questions are perturbed. This suggests enhancing the

model’s ability to understand filtering adjectives and relationships is crucial

for improving symbolic methods on real images.
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5.6.3 Hard and Easy Subset

We additionally perturb the visual-hard and the visual-easy testing splits [150]

and evaluate our CCO model on them. Specifically, the easy split contains

questions that visually easy thus can be answered correctly by their differen-

tiable first-order logic formula, while the hard split are harder in perception.

In other words, the easy split contains questions that can be answered by

a perception system alone, while the hard split contains images requiring

more reasoning. With perturbed versions, we can investigate to what degree

low-weight operations are implicated in multi-step reasoning for visually hard

questions.

We summarize the model performance in Table 5.4. With more operations

get removed, the accuracy drop on perturbed hard split is much larger than

the easy split. This indicates that the visually hard questions force the model

to better utilize every piece information in the question, while easy questions

contain more redundant operations that are not necessarily needed.

threshold All Easy Hard

−∞(orig) 56.13 78.03 37.42
-2 -0.14 0.4 -2
-1 -0.34 0.13 -2.17
0.5 -1.09 -0.51 -3.04
0 -1.71 -0.93 -3.86

+∞ -2.59 -1.88 -4.72

Table 5.4: Model accuracy on perturbed easy/hard splits.
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5.7 Conclusion

To improve symbolic reasoning for VQA on real images, we propose to cali-

brate concepts and operations (CCO), which helps models handle the unbal-

anced concept distribution and unequal importance of reasoning operations.

Experimental results demonstrate the effectiveness of the proposed method,

where CCO outperforms several baselines by a large margin and reduces the

performance gap between symbolic and non-symbolic methods. Additionally,

we propose a perturbed test set for better understanding and analyzing model

performance on real images. We hope this dataset can help researchers to

further study the potential of symbolic reasoning on real images in the future.
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Chapter 6

ExoViP: Step-by-step Verification
and Exploration with Exoskeleton
Modules for Compositional Visual
Reasoning

Compositional visual reasoning methods, which translate a complex query

into a structured composition of feasible visual tasks, have exhibited a strong

potential in complicated multimodal tasks like visual question answering,

language-guided image editing, etc. Empowered by recent advances in LLMs,

this multimodal challenge has been brought to a new stage by treating LLMs

as few-shot/zero-shot planners, i.e., visual-language programming [154]. Such

methods, despite their numerous merits, suffer from challenges due to LLM

planning mistakes or inaccuracy of visual execution modules, lagging behind

the non-compositional models. In this work, we devise a “plug-and-play"

method, EXOVIP, to correct the errors at both the planning and execution

stages through introspective verification. We employ verification modules

as “exoskeletons" to enhance current vision-language programming schemes.

112



Answer:

Compositional Visual 
Question Answering

Question:
Are both the
coffee table that
looks tan and the
nightstand to the
right of the TV
made of wood?

Ground-truth:
Yes

Image:

Visual Programming 
(Gupta & Kembhavi, 2023)

Program:

CROP
LOC

tan coffee table

CROP
LOC

TV

CROP_RIGHT[BOX1]
LOC

night stand

VQA[BOX0]
what does the coffee 

table look like?

VQA[BOX2]
what material is the 
nightstand made of?

A1 = 

BOX0 =

BOX1 =

BOX2 =

EVAL[A1, A2]
A1 == “wood” and A2 == “wood”

A2 = 

noAnswer:

Prediction
Error

X

Program:

VQA[BOX0]
what material is the 

coffee table made of?

VQA[BOX2]
what material is the 
nightstand made of?

EVAL
A1 == “wood” and A2 == “wood”

yes

EXOVIP (Ours)

Verify:

0.5 0.2 0.55 X

√

√

verify

small

Planning
Error

Correct it!

Is it a nightstand?

Image-text matching verifier

Verify with mixture-of-expert

image captioning verifier

VQA verifier

0.7 0.14 0.55

verify

verify

verify

√

√

X

X

wood

wood

yes

Answer = no

wood
A1 = 

A2 = 

Answer = 

Re-plan it!

Figure 6.1: An overview of EXOVIP. The prediction after each step is verified by
the proposed “Exoskeleton” verification modules, which contain a mix of three sub-
verifiers. The verified scores help correct the errors in the vision module predictions
or refine the reasoning programs planned by LLM.

Specifically, our proposed verification module utilizes a mixture of three

sub-verifiers to validate predictions after each reasoning step, subsequently

calibrating the visual module predictions and refining the reasoning trace

planned by LLMs. Experimental results on two representative vision-language

programming methods showcase consistent improvements on five composi-

tional reasoning tasks on standard benchmarks. In light of this, we believe

EXOVIP can foster better performance and generalization on open-domain

multimodal challenges.
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6.1 Introduction

Compositional visual reasoning tasks, such as visual question answering or

image editing following language instructions, are challenging multimodal

tasks that require complex multi-step visual reasoning based on the lan-

guage instruction. Compositional methods like neural modular networks

[155, 156, 157, 158, 159, 160], which translate the complex language instruction

into feasible individual visual tasks, has been successful in this task. However,

traditional compositional methods require well-designed neural modules for

specific datasets, thus struggle in generalization to open domains. In addition,

the intermedia embedding and attention among the neural modules can not be

improved by introducing supervision signals or feedback, so the performance

of these works is limited to the end-to-end training mechanism. Recently,

empowered by the advances in LLMs such as in-context learning and train-

of-thought reasoning [161, 162, 163, 164, 165]. recent methods like VISPROG

[154] and ViperGPT [166] apply LLMs as zero-shot/few-shot planners to solve

visual reasoning tasks, i.e. visual language programming. These visual lan-

guage programming methods leverage off-the-shelf pretrained vision models

and compose them step by step according to the reasoning trace planned by

LLMs, yielding interpretable intermediate results and highly generalizable

reasoning ability.

However, despite their merits, current visual programming methods still

suffer from challenges due to the failure of the LLM planning or the visual

modules, lagging behind the performance of non-compositional models. To

analyze the drawbacks, we manually checked 100 randomly sampled failure
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cases of VISPROG [154] on the visual question answering GQA dataset [167].

We find that most of the failures can be classified into two categories: (1)

around 30% of the failures are due to planning errors: LLM can not parse

the language query into a correct solvable program; (2) more than 40% of the

failures are due to module error: the visual modules are not able to correctly

execute the program. The others (less than 30%) are caused by synonyms (e.g.

“woman” vs “lady”) or ambiguity in the questions.

Motivated by these failure modes, in this work, we introduce EXOVIP,

a “plug-and-play” method that uses “exoskeleton” verification modules to

verify the reasoning results step by step, thus correcting the module errors and

refining the LLM planning traces. In Fig. 6.1, we demonstrate how EXOVIP

helps correct the two types of errors. Specifically, the verification module

contains a mixture of three sub-verifiers, including an image-text matching

verifier, an image captioning verifier, and a visual question answering verifier.

The verification module validates the correctness of the predictions of the

vision modules step by step and calibrates them to correct the module errors.

Furthermore, to refine the planning traces, we build a reasoning trace tree

based on the verification scores as well as the self-correctness score from

LLMs [168], and search through the tree to find the best trace that has the

highest score.

To demonstrate the effectiveness of EXOVIP, we apply our method to

two recent visual programming methods: self-defined programs, i.e., VIS-

PROG [154] and Python code programs, i.e., ViperGPT [166]. We run exper-

iments on five compositional visual reasoning tasks: compositional image
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question answering on GQA [167]; referring expression understanding on

RefCOCO and RefCOCO+ [169, 170], natural language for visual reasoning

on NLVR [171], visual abstract reasoning on KILOGRAM [172], and language-

guided image editing on MagicBrush [173]. Experiment results show consis-

tent improvements with the two models on the five tasks. In light of this, we

believe EXOVIP can foster better performance on open-world compositional

reasoning tasks. To summarize, our main contributions are as follows:

• We introduce the “exoskeleton” verification modules for compositional

visual reasoning, which verifies the correctness of vision module predictions

step by step.

• We show how the verification modules are leveraged to correct the module

errors by calibrating the module predictions, and to correct the planning

errors by tree searching considering both verification scores and LLM self-

correctness.

• We apply our method on two models and show consistent improvements

over five tasks, showing the effectiveness of EXOVIP.

6.2 Related Work

LLMs in multimodal tasks. LLMs brought great convenience to multimodal

tasks with their generalizability and knowledgeability. Generally, there are

three ways researchers use LLMs to solve multimodal tasks. Some researchers

incorporate additional parameters to adjust LLMs for use in multimodal

domains, then fine-tune the model with the LLMs either frozen [174, 175, 176,

177, 178, 179, 180] or unfrozen [181, 182, 183]. Others take language model as
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an expert, and mixture it with experts from other modalities, such as vision,

speech to collaborate on various kinds of multimodal tasks [184, 185, 186]. In

this work, we mainly focus on the third way which adopts LLM’s planning

ability in parsing complex queries. VISPROG [154] takes LLM to compose

models for queries by generating programs. The strong zero-shot performance

of VISPROG on a range of vision-language tasks demonstrates its potential

in multimodal tasks involving complex reasoning. ViperGPT [166] leverages

LLMs to generate Python code, which composes a set of available modules.

MM-REACT [187] builds a multi-round, dialogue-based system to call a set of

vision experts by designing the prompt of LLMs. However, the performances

of these works are hindered by both the parsed planning chain and the visual

experts. Inspired by the excellent performance gain from the step-by-step

verification [188], we improve this train of work with additional verification

strategies.

Compositional multimodal methods. Compositional methods have long

been explored to improve neural models’ interpretability and reasoning ability.

At an early stage, neural module networks (NMN) [155, 156, 157, 158, 159, 160]

compose neural models to end-to-end differentiable networks. However,

the pre-defined neural modules have limited applications on open-domain

challenges, and the intermedia embedding and attention makes it difficult to

construct intermedia supervision signals. Recently, the presence of LLMs has

made it possible to automatically compose various kinds of finetuned neural

models [184, 154, 166, 187, 186] or external tools [189, 190, 191, 192, 193, 194].

These works allow us to diagnose the intermedia rationales of the reasoning
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process. However, human annotation of these intermedia results can be

rather time-consuming. In this work, we make ways to correct errors in the

intermedia results without any human intervention.

Self-correctness in LLMs. Although LLMs achieve great success in various

tasks, there are many errors in LLM-based natural systems [168]: hallucina-

tion [195, 196], unfaithful reasoning [197, 198, 199], toxic, biased, and harmful

contents [200], flawed code. One popular way to fix these errors is to use the

LLMs themselves [201, 202, 203, 204] to obtain feedback, which can be adopted

to correct the errors. Motivated by the self-correction capability of LLMs in

addressing mistakes from LLM-powered natural language systems, some re-

searchers introduce the self-correcting strategy to reduce the reasoning chain

in multimodal frameworks. IPVR [205] additionally utilizes LLMs to generate

the rationale supporting the answer, checks the generated rationale with a

cross-modality classifier, and makes sure that the rationale can consistently

infer the predicted output. IdeaGPT [206] takes another LLM as a reasoner

to get the final answer by summarizing the intermedia results from visual

experts. Additionally, the reasoner helps to improve the results iteratively

through self-consistency. However, it’s intuitive that LLM’s self-correction

ability would be limited by the LLM itself. In our work, we combine the

feedback from LLM and other visual experts to verify the intermedia results

and the planned reasoning chain.
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6.3 Preliminaries

Task Definition. Our work focuses on a set of Visual Compositional Rea-

soning (VCR) tasks, such as visual question answering, referring expression

understanding, visual reasoning using natural language, abstract reasoning,

language-guided image editing. These VCR tasks require compositional rea-

soning about an image input I and a text input T, and predict the output, e.g.

answer to a given question, edited images given a language instruction, etc.

Visual-Language Programming (VISPROG). VISPROG [154] is a zero-

shot model for the VCR tasks, utilizing LLMs and pretrained vision models.

VISPROG first uses LLMs to decompose the complex text description into a

sequence of individual operations, then executes each operation by calling

various pretrained visual operation models, including object detectors, image

captioners, VQA models, image generators, etc. In other words, different

vision models are composed in a way that is specified by the LLM to get the

prediction. Given the input text T, an LLM transforms it into an executable

program P containing a sequence of operations: P = {o1, . . . , on}, where n is

the number of operations. Each operation oi can be executed by some symbolic

operations (e.g., “crop”, “and”, “or”), or by calling some pretrained visual

models (e.g. CLIP [207], BLIP [208]). The output of operation oi is denoted as

ai. The final prediction is derived after we execute all the operations. However,

this perspective highlights two key shortcomings of existing approaches: i)

module error, the operation models can not predict the answer correctly; ii)

planning error, the LLM might generate unfaithful reasoning.
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6.4 EXOVIP: Exoskeletons with Verification and Ex-
ploration

To address the aforementioned shortcomings, we propose EXOVIP, a frame-

work that adopts exoskeleton verification modules to calibrate the prediction

of the execution modules and refine the reasoning path with tree searching.

Fig. 6.1 depicts the overall framework.

For each operation oi, we get a set of candidate answers {ai
1, . . . , ai

k}, with

confidence scores {pi
1, . . . , pi

k}. Unlike VISPROG, which directly takes the

top answer, we use additional verification modules to verify each candidate

answer, thus producing verification scores {si
1, . . . , si

k}. Then the verification

scores s are used to calibrate the original scores, so the errors made by the

execution modules can be corrected. Additionally, we use the verification

scores to search for a program with high verification scores, in order to refine

the execution program P by tree-searching.

In this section, we will first introduce the verification modules, and then

describe how the verification results are applied to correct the results of

execution modules, and to search for the reasoning trace.

6.4.1 Verification Modules

The verification modules aims to verify the candidate answers {ai
1, . . . , ai

k}
given an operation oi. For example, the LOC(nightstand) operation returns a

set of candidate bounding boxes containing a nightstand, then the verification

module verifies whether each of the returned boxes contains a nightstand and

produces verification scores.
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Our verification module is a mixture of three sub-verifiers, including an

image-text matching verifier, an image captioning verifier, and a visual ques-

tion answering verifier. Each verifier is a pretrained vision-and-language

model that is taken off the shelf. The outputs of the three verifiers are com-

bined as the final verification score. Note the verification model does not

introduce additional pretrained models, as these verifiers are from the execu-

tion modules of VISPROG.

Image-text matching verifier calculates the similarity between the whole

images and all candidate sentences, which returns the semantic representation

of the image-sentence pair. We construct the candidate sentences Tans by filling

the template “a photo of" with candidate answers. In this work, we select

CLIP [207] to calculate the similarity between images and sentences.

sitm
ans = ITM(Tans, img) (6.1)

Image captioning verifier leverages natural language to describe the visual

details of the image. We first get the caption of the image Cimg by BLIP [208].

We then construct the descriptions of candidate answers Cans with the template

"the image describe". Specifically, for candidate question-answer pairs, we

initially transform the pair into a sentence before inserting it into the template.

After that, we calculate the sentence semantic similarity [209] between the

captions and the constructed descriptions as the verification score.

scap
ans = Sim(Cans, Cimg) (6.2)
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VQA verifier is more flexible than others, which offers us more opportu-

nities to evaluate the advanced relationships between image and language,

such as entailment and factual consistency. Slightly different from the other

two types of models, for VQA verifier, we design templates w.r.t. the neu-

ral modules. For example, we use “Is there any object in the image ?" for

the object detection model, and use “Does this part looks like object ?" for

the classification model used in the abstract reasoning task. We determine

the verification score by BLIP [208] by calculating the difference in answer

probabilities Qans between "yes" and "no".

svqa
ans = VQA(Qans, True)− VQA(Qans, False) (6.3)

Verification score Having the scores from each individual verification

module, we compute their average to get the verification score for each given

answer.

sans = avg(sitm
ans, scap

ans, svqa
ans) (6.4)

Negative sampling. Empirically, we find that directly applying this verifi-

cation score does not work well, because the score scales for different kinds

of candidates are not well-calibrated. Motivated by recent works in truth-

fulness [210], commonsense [211], and bias [212], we propose to take the

difference of a candidate answer aj with its antonym nj as the final verification

score. More specifically, the antonym nj is selected based on the text embed-

dings from CLIP [207], i.e. the word of lowest embedding similarity is selected.

For example, the antonym of “nightstand” is “stocking”. We then compute the

difference of the verification scores of the candidate answer and its antonym,
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and get the final verification score. Mathematically, given a candidate answer

aj, the final verification score is

sj = saj − snj (6.5)

Calibration using verification scores After obtaining the verification scores

of all candidate answers S = {s1, . . . , sk}, we normalize them as weights and

calibrate the candidate predictions.

p′j = wj ∗ pj, (6.6)

where wj is the normalized verification score. More specifically, the ver-

ification score sj is re-scaled to wj =
sj−smin

smax−smin
· (τ − 1

τ ) +
1
τ , where τ is a

hyper-parameter controlling the scaling factor (smin, smax are the minimum or

maximum of all the candidate scores.

6.4.2 Exploration with Reasoning Trace

To correct the second type of reasoning errors, i.e. planning errors, we further

apply the verification scores to refine the reasoning trace predicted by LLMs.

Motivated by the recent works showing that searching through a combinato-

rial problem space can greatly improve the performance of LLMs for complex

tasks [213, 214, 215], we introduce our dynamic reasoning trace searching

procedure, which takes advantage of both the LLM self-correctness potential

and our verification modules.

The reasoning trace searching procedure is represented as a tree structure,

where each node of the tree is a reasoning operation. To get the best reasoning
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Figure 6.2: Search of the reasoning trace. We beam search through the program tree,
based on the verification scores as well as the LLM self-correctness.

trace, we search from the tree using the beam search algorithm [216, 217, 218],

which has long been proven to be effective in sequence-to-sequence problems.

In each step of searching, we consider both the verification scores and the

LLM self-correctness scores.

More specifically, our trace searching procedure contains three steps. First,

in order to generate more diverse reasoning traces to search from, we ran-

domly perturb the in-context examples (i.e. change the order or remove some

samples of examples) in the prompt for LLM. Second, after we get the result

of candidate neural modules, we sort them according to the verification scores

and select the top K candidate reasoning traces. Third, because the verifi-

cation scores can be very close for the selected K traces, we further use the

self-correctness ability of LLMs to reorder the K traces and select the top P

from them (P < K). If the verification score is zero at some step, we re-plan

the search trace.
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6.5 Experiments

6.5.1 Setup

We set up experiments on the following five tasks.

Compositional image question answering on GQA. GQA [167] is a large-

scale dataset containing complex reasoning questions about real-world images

in MSCOCO-style [219]. Considering the large size of the dataset, in order to

balance the cost of LLM API and the diversity of evaluation dataset, we follow

the setting of VISPROG [154] and sample a subset from GQA for evaluation.

We randomly sample 5 samples from the balanced val set and 20 samples

from testdev set of each question type. e.g. “weatherVerify” for judging the

weather, “twoCmomon” for judging common attributions of two objects. In

summary, there are 102 question types and 2327 questions in our test set.

Referring expression understanding on RefCOCO and RefCOCO+. Given

a natural language query describing a region in a given image, the referring

expression understanding task requires identifying the bounding box of the

object in the image being referred to. RefCOCO and RefCOCO+ [169, 170] are

two standard datasets for this task. We randomly sample 2 samples per type

from the test set from RefCOCO dataset and RefCOCO+ dataset. In summary,

our test set includes 66 types, e.g. “bicycle”, “backpack”, and 261 queries.

Natural language for visual reasoning on NLVR2. In NLVR2 [171], given

a description of a collection of images, the model needs to justify whether the

description is correct or not (binary classification). The task requires dealing
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with various kinds of linguistic phenomena, like numerical expressions, quan-

tifiers, coreference, negation, etc. In this work, we use the NLVR2 balanced test

set for evaluation, which includes 2316 questions and corresponding image

pairs.

Visual abstract reasoning on KILOGRAM. KILOGRAM [172] contains

richly annotated tangram puzzles and requires the model to understand the

abstract tangram shapes (e.g. dog, bird) and classify them. Specifically, given

a textual description and a set of images, the task is to select the image cor-

responding to the description. This task evaluates the ability to generalize

through abstraction, using visually ambiguous stimuli. We conduct exper-

iments using the test set, where the textual descriptions solely contain the

whole-shape description, and the images include parts with different colors.

The test set contains 1,251 descriptions, with each one paired with 10 images.

Language-guided image editing on MagicBrush. This task requires edit-

ing an image according to a natural language instruction, keeping the other

area of the image unrelated to the instruction unchanged. The MagicBrush

dataset [173] supports various editing scenarios including single-/multi-turn.

Considering the accuracy of automatic evaluation metrics and the costs of

human evaluation, in our experiments, we only choose the samples involv-

ing single-turn image editing to evaluate our method. In total, there are 100

examples in the test set. Following [173], we select the CLIP-I and DINO,

which measure the image quality with the cosine similarity between the gen-

erated image and reference ground truth image using their CLIP [207] and

DINO [220] embeddings.
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6.5.2 Main Results

We first apply EXOVIP to VISPROG and show results on the five tasks. Then we

apply it to the python-code-based compositional reasoning method ViperGPT

to demonstrate its generalizability.

6.5.2.1 Compositional Visual Question Answering

Baseline Model We set up the experiments following the settings in the

official VISPROG implementation.1 Moreover, we select BLIP-flant5-xxl[176]

and InstructBLIP-flan-t5-xl[179] as additional baselines, which are strong

vision-language models incorporating LLMs and pretrained on large vision-

language datasets. These baselines have shown strong zero-shot ability on

various tasks like image caption and visual question answering.

Table 6.1: Results for compositional visual question answering on GQA.

Methods Accuracy

BLIP2-xxl [176] 49.20
InstructBLIP-flant5-xl [179] 55.39

0 VISPROG [154] 57.41

1 EXOVIP w/o self-correctness & negative sampling & search 57.11
2 EXOVIP w/o self-correctness & search 58.53
3 EXOVIP w/o self-correctness (whole search) 59.17
4 EXOVIP w/o self-correctness (beam search) 60.57
5 EXOVIP w/o verification (beam search) 60.16
6 EXOVIP 61.49

Analysis We apply our method to VISPROG and report the results on GQA

1Becasue VISPROG doesn’t release their sampled evaluation subset, we do sampling
following the VISPROG paper and evaluate all the methods on our sampled evaluation set.
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Table 6.2: Analysis on the sub-verifiers.

Methods Accuracy

Base 58.14

ITM 59.26
Caption 59.22
VQA 59.35

All 60.03

in Tab. 6.1. While VISPROG has already demonstrated good performance

(57.41) compared with BLIP2 and InstructBLIP, our method further improves

its performance to 61.49, showing a significant performance boost. Note that

our method does not introduce extra modules or knowledge compared with

VISPROG, since the verification modules come from VISPROG itself.

To verify the effectiveness of each component in our method, we run a

series of analysis experiments on our method (also in Tab. 6.1). We have the
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following observations:

1. Negative sampling is key to verification modules. Naively adding the verifica-

tion modules (line-1) does not work, even making the performance worse.

But when we introduce the negative sampling strategy using antonyms to

the verification modules (line-2), the performance boost becomes signifi-

cant.

2. Exploration with reasoning trace matters. In line-3, “whole search" means

we use LLMs to obtain a set of complete planning traces, then execute all

the traces to get the final verification scores, and select the best trace with

the highest verification score. The “beam search" strategy (line-4) means

we select next step according to current verification scores. While “whole

search” helps, “beam search” can further improve the accuracy to 60.57

from 59.17, which indicates the effectiveness of our tree-like step-by-step

searching strategy.

3. Self-correctness does help but is less significant than verification mechanism. In

line-5, We only use LLM self-correctness during trace searching, without

using the verification scores. While the result shows an accuracy gain

of 2.75 over the original VISPROG, applying both leads to further better

performance.

4. EXOVIP achieves the best performance with the collaboration of all the introduced

components. In line-6, we combine all the introduced components and get

the final performance of 61.49, showing a significant boost ((4.08). We

believe our method successfully incorporates the verification modules with
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the LLM self-correctness ability.

Analysis on the sub-verifers. We evaluate the effects of different types of

verification modules with the setting of the best demonstration setting. As is

illustrated in Tab. 6.2, Different verification modules share similar boost gain,

but a mixture of these modules can benefit more.

Analysis on the trace-searching strategy. We calculate the verification

scores among different samples and plot the distribution of the verification

scores in Fig. 6.3. We find two advances brought by the searching strategy.

First, the average of the verification scores significantly improved after we

applied our search strategy. Secondly, the variance gets larger after applying

the search strategy, which indicates our method can potentially make use of

the verification scores to prompt the effectiveness of the reasoning traces.

Analysis on invalid programs. We calculate the percentage of failure

cases that can not be correctly executed by the program interpreter. We are

delighted to find out that our method reduces the error rate from 5.84% to

3.82%, which indicates our method can predict more executable plan routines

compared to the baseline VISPROG.

Table 6.3: Results on RefCOCO and RefCOCO+.

Methods IoU

Qwen-vl-chat-7b [221] 32.54
VISPROG [154] 27.28
EXOVIP 31.50
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Table 6.4: Visual reasoning on NLVR.

Methods Accuracy

OFA-large [222] 58.38
VISPROG [154] 67.66
EXOVIP 67.96

Table 6.5: Abstract reasoning on KILOGRAM.

Methods Accuracy

CLIP-large [207] 27.26
VISPROG [154] 24.46
EXOVIP 26.22

6.5.2.2 Visual Language Grounding

Baseline Model We adopt the Qwen-vl-chat-7b [221] as the baseline. Qwen-

vl-chat-7b is a pre-trained large vision-language model that uses Qwen-7B

with further training with aligned techniques. Qwen-VL outperforms current

SOTA generalist models on multiple VL tasks and has a more comprehensive

coverage in terms of capability range.

Analysis As demonstrated in Tab. 6.3, although our method can’t achieve

SOTA (Qwen-VL) on the RefCOCO dataset, it helps bridge the gap between

VISPROG and the large vison-language model. While Qwen-VL is built on a

LLM with 7 billion parameters, which is trained on trillions of tokens from the

corpus, our method assembles a team of experts whose collective parameters

total less than 1 billion. We believe our method can be improved with more
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Table 6.6: Image editing on MagicBrush.

Methods CLIP-I DINO

InstructPix2Pix [223] 84.19 69.60
VISPROG [154] 90.82 82.70
EXOVIP 91.27 83.40

advanced experts.

6.5.2.3 Natural Language Visual Reasoning

Baseline Model We take the OFA-large [222] as baseline. OFA unifies a diverse

set of cross-modal and unimodal tasks in a simple sequence-to-sequence

learning framework.

Analysis Tab. 6.4 shows the results. Although VISPROG exhibits strong

complex reasoning ability over the end-to-end model, our method can hardly

further improve its performance. We believe this is because we only take

VQA modules to solve NLVR problems. One on hand, the performance

of decomposed VQA steps is hindered by the performance of VQA model,

especially when there is error accumulation among a sequence of VQA steps.

6.5.2.4 Visual Abstract Reasoning

Baseline Model We use the CLIP-large [207] as a baseline to test its perfor-

mance on the text-to-image retrieval task proposed by KILOGRAM.

Analysis For our method, given an object, we adopt the LLM to get its

possible semantic parts. At the same time, we segment the image into several
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Figure 6.4: Qualitative results of text-guided image editing on MagicBrush.

visual parts. After that, we align the semantic parts with the visual parts to en-

hance the matching process. In Tab. 6.5, we see the gap between VISPROG and

CLIP. Although our method decreases the performance gap, the compositional

method still can not achieve SOTA. Since part identification has already been

demonstrated to play an important role in human abstraction [224]. We be-

lieve our method can be enhanced by introducing a better scene segmentation

model.

6.5.2.5 Text-guided Image Editing

Baseline Model We take InstructPix2Pix [223] as a baseline. InstructPix2Pix is

a conditional diffusion model trained on GPT3 augmented datasets.

Analysis Tab. 6.6 and Fig. 6.4 show the results on MagicBrush. While non-

compositional methods are likely to change unrelated pixels, compositional

methods are more controllable.

133



6.5.3 Generalizability of our Method

Table 6.7: Results for ViperGPT on GQA.

Methods Accuracy

ViperGPT [166] 45.47
ViperGPT+ExoViP 46.84

To demonstrate the generalizability of our method, we apply our method to

another compositional method, ViperGPT, which composes available modules

by generating Python codes. We equip ViperGPT with our method and test

its performance on the GQA dataset. We show the results in Tab. 6.7. We find

the performance boost is less significant than which on VISPROG. We analyze

this due to ViperGPT provides a few examples in the demonstration and it

turns the parameter of the code-generation model to make it deterministic

to generate subroutines. In other words, ViperGPT benefits little from our

reasoning trace-searching strategy.

6.6 Conclusion

In this work, we identify two key types of errors in existing compositional

methods: planning errors and module errors. To address these errors, we

introduce an innovative verification framework EXOVIP. This framework

verifies the correctness of vision module predictions. It corrects module errors

by calibration and refines the planning process through tree searching. During

this process, it considers both verification scores and the self-correctness of
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LLM. Applying the EXOVIP to two existing models, we achieve significant

performance improvements across five different tasks. The results reinforce

the promise and potential of EXOVIP on various open-world compositional

reasoning tasks, marking an important milestone in the realm of multimodal

tasks involving complex reasoning.
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Chapter 7

Localization vs. Semantics:
Visual Representations in Unimodal
and Multimodal Models

Despite the impressive advancements achieved through vision-and-language

pretraining, it remains unclear whether this joint learning paradigm can help

understand each individual modality. In this work, we conduct a comparative

analysis of the visual representations in existing vision-and-language models

and vision-only models by probing a broad range of tasks, aiming to assess the

quality of the learned representations in a nuanced manner. Interestingly, our

empirical observations suggest that vision-and-language models are better at

label prediction tasks like object and attribute prediction, while vision-only

models are stronger at dense prediction tasks that require more localized

information. We hope our study sheds light on the role of language in visual

learning, and serves as an empirical guide for various pretrained models.
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Figure 7.1: We compare the visual representations from unimodal and multimodal
models on five tasks, in order to probe the semantics and localization knowledge
encoded in the representations.

7.1 Introduction

The joint learning of vision and language offers mutual benefits. As evi-

dent by the recent advancements in vision-and-language pretraining (VLP)

models [225, 226, 227, 228], they attain not only impressive performance on

multi-modal tasks like visual question answering, but also on specialized

uni-modal vision tasks like ImageNet classification [229], or language tasks

GLUE language understanding [230].

Despite the superior performance, there is little understanding of how

multimodal learning can help visual representations. Therefore, we hereby are mo-

tivated to compare the visual representations in existing vision-and-language

(VL) models and vision-only (V) models from a probing perspective. Specifi-

cally, we probe the visual representations through a range of probing tasks that

evaluate different properties, including semantics knowledge and localized
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information, in order to gain a fine-grained understanding of the visual repre-

sentations. This is inspired by recent works on multimodal feature probing

[231, 232], which studies the opposite question to ours, i.e., the role of vision

in language models.

Fig. 7.1 illustrates our probing pipeline. We first extract image features

using different pretrained models, and then train a simple prediction head

to align the model’s representation space with the label space of interest. We

make the head as simple as possible based on the intuition that less expressive

heads can more selectively reflect the quality of the representations [233]. The

probing is done on various tasks and datasets: object name classification on

the Visual Genome dataset [79], attribute prediction on the VAW dataset [234],

object detection and instance segmentation on the MSCOCO dataset [235],

and semantic object part segmentation on the PartImageNet dataset [236].

With these probing tasks, we compare vision-and-language pretrained models

including OFA [227], FLAVA [228] and CLIP [225] with advanced vision-only

models including MAE [237] and MOCOv3 [238].

Interestingly, our experiments suggest that VL models are much better at

the label prediction tasks (e.g., object class and attribute prediction), while

vision-only models are stronger at dense prediction tasks like object detection

and segmentation. In other words, multimodal models encode more semantic

information in visual representations to better predict fine-grained labels,

but fail to enrich the localization information that is required by spatial-

aware tasks. This finding is further verified by a more detailed analysis

of the segmentation and attribute prediction results, which reveals intriguing
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properties of the unimodal and multimodal representations.

In summary, we probe the visual representations in popular VL and vision-

only pretrained models on a broad spectrum of tasks and suggest that multi-

modal representations encode better semantics. We hope our extensive prob-

ing results can serve as a fine-grained benchmark for the publicly released

pretrained models, which provides an empirical guide to help researchers

choose which model to use for different downstream tasks. Moreover, by

offering these insights into the role of language in multi-modal learning, we

hope to catalyze future explorations in this direction.

7.2 Related work

Vision-and-language pretraining (VLP). VLP methods perform well on multi-

modal downstream tasks like visual question answering [14] and image cap-

tioning [239] and show potential on single-modal tasks. For example, dual

encoders trained with a contrastive loss like CLIP [225] and ALIGN [226]

achieve superior visual learning performance. While earlier VLP methods

(like LXMERT [2], UNITER [240], OSCAR [5], VinVL [76] ) rely on image

features extracted by separately trained vision models like Faster-RCNN [104]

or Resnet [241], more recent works learn the visual features jointly with lan-

guage. Representative works include OFA [227], Florence [242], FLAVA [228],

Unified-IO [243], CoCa [244], and SimVLM [245] etc. We refer readers to [246]

for more details.

Vision and language benefit each other. Several recent works in NLP
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suggest that multimodal learning can help language understanding. Vok-

enization [247] suggests vision improves the grounding ability of language

models. [248] shows reduced reporting bias in multimodal world. Z-LaVI

[249] and VIDLANKD [250] show language understanding performance can

be improved by better visual imagination or knowledge distillation from

videos. Recent work [232] analyzes language and multi-modal models and

shows that vision can help language models learn better visual commonsense

knowledge and mitigate reporting bias. However, there is little understanding

of the opposite question, i.e. how does the visual learning differ in multimodal

and unimodal models.

Probing. Probing is a widely used strategy in NLP for interpreting rep-

resentations [251, 252]. Various works use probing to show that language

representations encode a broad range of properties like part-of-speech [253],

syntax [254], semantics [255], sentence length [256], etc., and to compare differ-

ent language models in those properties [257]. Probing has also been adopted

to understand multimodal representations in terms of the capacity for instance

retrieval [231], inter-modality knowledge [258], understanding of verbs [259],

entity and syntactic grounding [260], and visual commonsense knowledge

[232], etc. However, probing has not been widely explored for visual represen-

tations, despite as a fast on-the-fly metric for model evaluation [261, 237, 238]

complementary to fine-tuning. To our knowledge, we are the first to compare

VL models and vision-only models using probing.
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Task Dataset # of classes Metric Prediction head

object name prediction Visual Genome [79] 151 accuracy linear classifier on ROI features
attribute prediction VAW [234] 620 mAP linear classifier on ROI features
part semantic segmentation PartImageNet [236] 40 mIOU head from Segmenter [262]
object detection MSCOCO [235] 80 mAP head from VitDet [263]
instance segmentation MSCOCO [235] 80 mAP head from VitDet [263]

Table 7.1: The details of {dataset, number of classes, metric, prediction head} for the
five probing tasks.

7.3 Method

To analyze the capacity of the learned representations of different models,

we choose a set of tasks to probe the models. For each task, we first extract

features using the pretrained models, then we train a simple standard head to

predict the results. Mathematically, for every image I ∈ R3×w×h, we extract its

features f ∈ RC×W×H using the off-the-shelf visual encoders in the pretrained

models. Here (w, h) is the size of the input image and (C, W, H) is the size of

the feature. Then a prediction head P is trained to predict the task-specific

results based on feature f . In the whole process, only the head P is trained

while the pretrained model (i.e., feature extractor) is frozen.

In this section, we will first describe the probing tasks, datasets and the

prediction head for each task (Sec. 7.3.1), then we describe the evaluated

models (Sec. 7.3.2), and finally how to make the comparison settings fair for

every model (Sec. 7.3.3).

7.3.1 Probing tasks and datasets

We choose five probing tasks: object name prediction, attribute prediction,

object detection, instance segmentation and semantic segmentation for object
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parts. Among the five tasks, object name and attribute prediction focus more

on predicting the semantic labels, while the others are dense prediction tasks

that highly rely on spatial information.

Object name prediction. Understanding object names is critical in various

multi-modal downstream tasks like VQA and image captioning, in which text

descriptions refer to objects by their names. Given an image and a bounding

box, object name prediction requires predicting the name of the object in the

box. We use the Visual Genome dataset [79] for training and evaluation in this

task. Images in Visual Genome mostly come from MSCOCO [235] and contain

multiple objects. For each object, the annotations provide its bounding box,

name and attributes (color, material, etc.). The annotations cover 151 object

classes for 1.3M objects in 108k images.

A simple linear classifier is used to predict object names. More specifically,

for each object, we first use ROI-Pooling [108] to average pool the features

according to its box, then use a linear layer on top of the pooled features to

predict the name class of the object. Cross entropy loss is used to train the

head. Note that the ground-truth bounding box coordinates are provided to

the head for both training and testing.

Object attribute prediction. Similar to object name prediction, attribute

prediction requires predicting attributes for the object in the given bounding

box. As shown in [76], visual features with better-encoded attribute informa-

tion can substantially improve the performance of multi-modal tasks. This

motivates us to treat the attribute as an important axis for evaluating visual

representation. The VAW dataset [234] is used for object attribute prediction.

142



VAW improves the noisy attribute annotations in Visual Genome. VAW an-

notates 620 attributes belonging to 8 categories, including color, shape, size,

material, texture, action, state, and others. Every attribute is annotated as

positive, negative, or unknown for each instance. The annotation covers 260k

instances from 72k images, which is a subset of Visual Genome images. Mean

average precision (mAP) is used to evaluate the prediction results following

[234].

Since attribute prediction is formulated as a multi-label classification prob-

lem, the prediction head is similar to object name prediction, but has several

differences. First, binary cross entropy loss is used for training instead of cross

entropy. Second, since the attributes naturally come with a long-tailed distri-

bution, to prevent the rare attributes (e.g., playing) from being overriden by

the frequent ones (e.g., black), we assign higher weights to rare attributes and

lower weights to frequent ones. Third, for the attributes labeled as unknown,

we treat them as negative labels with a small (0.001) weight. Those strategies

are borrowed from [234].

Object detection and instance segmentation. While object name/attribute

prediction tests the ability to predict class labels when the object bounding

box is given, we are also interested in tasks that focus more on locating the

objects. We choose object detection and instance segmentation on MSCOCO

[235] for this purpose. MSCOCO contains 330K images with 1.5 million object

instances in 80 categories. The bounding box and segmentation mask are

annotated for each instance. mAP, i.e., mean of average precision for each

category, is adopted as the evaluation metric.

143



Because detection and segmentation cannot be completed using a simple

head like a linear layer, we adopt the prediction head in VitDet [263] as our

probing head. While the widely used Mask-RCNN is based on convolutional

neural network (CNN) features, [263] propose a variant that is more suitable

for non-hierarchical transformer features. Considering the fact that most of

our evaluated models are transformer-based, we adopt this VitDet head for

probing in our work. Unless specified, all the experiment settings are kept the

same as [263].

Part semantic segmentation. While image classification accuracy on Ima-

geNet dataset [229] is the most commonly used metric for evaluating visual

representations, the recent PartImageNet dataset [236] provides additional

annotations for the ImageNet images, thus enables finer-grained evaluation.

PartImageNet annotates segmentation masks of 40 object parts (e.g., head,

body, tail) for 11 categories of objects on 24k images. Using this dataset, we

perform semantic segmentation of object parts as an additional probing task

that requires localization information.

For the segmentation head, we use the mask transformer decoder in Seg-

menter [262] due to its simplicity and impressive performance on standard

datasets. [262] adapts transformers for semantic segmentation with the pro-

posed “mask transformer decoder” on top of the embeddings produced by

the transformer encoder (standard ViT). In our probing, we replace their trans-

former encoder with the pretrained models to be evaluated and train the mask

transformer decoder to output the semantic segmentation map. Because our
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goal is to fairly compare different models instead of achieving high perfor-

mance, we reduce the input image size (from 1024 × 1024 to 224 × 224). A

linear layer is used to match the feature’s dimensions and bilinear upsampling

is used to match feature’s spatial sizes. All the other training settings are kept

the same.

7.3.2 Evaluated models

We evaluate five models: three representative VL models including CLIP,

OFA and FLAVA, and two vision-only models including MAE and MOCOv3.

Among the five models, CLIP and MOCOv3 are trained using contrastive

loss, while the others are trained with sequence modeling losses. We choose

these models because they are representative and highly popular, and their

pretrained weights and code are publicly available. In the following, we

describe the models, especially their visual components, and how we extract

features from them.

CLIP [225]. CLIP is a dual encoder model trained with contrastive loss

using 400M image-text pairs. The image embeddings produced by the im-

age encoder, which can be either a ResNet or a transformer, and the text

embeddings produced by the text encoder are trained to be closer with each

other in the embedding space when the image and text pair matches. The

learned image embeddings are shown to have superior transferability on

various downstream tasks. In our study, image features are extracted using

the pretrained image encoder.
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OFA [227]. OFA is a unified model that targets both uni-modal and multi-

modal tasks. The vision tasks (image classification and object detection),

language tasks, and multi-modal tasks (VQA, region/image captioning, visual

grounding) are all formulated into a sequence-to-sequence generation problem.

In particular, special visual tokens from discrete-VAE [264, 265] are used for

image infilling and the object bounding box coordinates are also discretized

into special tokens. The OFA model first uses a ResNet (Res101 for OFAbase)

to encode images, then use the transformer encoder and decoder to generate

the target sequence from image and text features. Cross entropy loss is used

as supervision. OFA is pretrained using 20M image-text pairs with additional

uni-modal data. To obtain visual representations, we feed the model with only

the image (i.e., empty text), send it through the ResNet, and take the output of

the transformer encoder.

FLAVA [228]. FLAVA is a fully transformer-based unified model. Similar

to OFA, the model solves both uni-modal and multi-modal tasks. However,

the differences lie in (a) tasks, (b) model architecture, and (c) training loss. (a)

FLAVA does not have bounding boxes in the vocabulary, and thus does not

support box-related tasks like object detection, visual grounding or region

captioning. (b) FLAVA is fully based on transformers; it uses two separate

transformer encoders to encode images and texts, then uses several more

transformer layers for multi-modal fusion. (c) FLAVA takes multiple losses

including CLIP-like contrastive loss, masked image/text/multi-modal model-

ing losses, and image-text matching loss. FLAVA is pretrained on 70M image

and text pairs. We take the output of the visual transformer encoder as image
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representations.

MAE [237]. Masked Auto-Encoder (MAE) is a self-supervised vision

model trained with a masked image modeling task. MAE encodes masked

image patches with a transformer encoder and reconstructs the missing pixels

with a lightweight decoder trained with MSE loss. Unlike OFA and FLAVA,

the reconstruction for MAE happens in the continuous pixel space, which

does not require dVAE to generate discretized image tokens. MAE is trained

only with ImageNet-1k data and shows promising transfer performance to

downstream tasks.

MOCOv3 [238]. We choose MOCOv3 to represent self-supervised vision

transformers trained with contrastive loss. During training, two crops for

each image under random data augmentation are encoded by two encoders, a

key encoder and a query encoder, into two vectors named “key” and “query”

respectively. During training, the goal is to retrieve the corresponding “key”

by the “query”. Similar to MAE, MOCOv3 is trained using ImageNet-1k.

7.3.3 Comparison settings

To make the comparison fair, we carefully choose the model size and input

size, and ensure different methods are comparable. As probing tasks are

highly sensitive to image size and feature’s spatial size, for all the models on

all the tasks, we fix the input image resolution to be 224*224. We choose this

size because 224*224 is the input size for pretraining for all the models except

OFA (OFA is pretrained with size 384 for base version and 480 for large). For

dense tasks, although the original detection and segmentation models (i.e.,
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VitDet and Segmenter) use larger input image sizes for better performance,

we unify the input size because our goal is to fairly compare models, rather

than achieving the best performance.

We find the probing results sensitive to the models’ input patch size,

because different patch sizes produces features with different spatial sizes.1

Therefore, considering the availability of pretrained checkpoints with different

model sizes and input patch sizes, we try our best to align the feature size

and evaluate with the ViT-B/16 backbone by default. Because OFA is not

purely transformer-based, we evaluate on the base size, which has a ResNet +

transformer encoder with 120M parameters (comparable to the 86M ViT-B/16).

More details of the evaluated models are shown in ??.

7.4 Experiments

7.4.1 Implementation details

For object name and attribute prediction, the models are trained with a learn-

ing rate of 0.001 and batch size of 64 for 200 epochs. We adopt early stopping

based on validation performance, then report performance on the test split

using the best model. For object detection and segmentation on the COCO

dataset, the model is trained for 120k iterations with batch size 20. The learn-

ing rate is first set to 8e-5, then decay twice at step 100k and 115k with a factor

of 0.1. For part segmentation, we train the model with a learning rate of 0.01

and batch size of 128 for 200 epochs. The validation performance for the final

1E.g. for input images of 224*224, ViT-B/16 produces visual representations with size
768*14*14, while ViT-B/14 gives feature size 768*16*16, which will affect probing.
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Task VG Obj. VAW Attr. COCO Det. COCO Seg. Part Seg. IN1k ft. IN1k probe

V+L
OFA 57.13 61.67 25.04 19.38 33.11 82.2 -
FLAVA 54.29 61.51 21.06 17.20 34.77 - 75.5
CLIP 51.54 61.15 19.55 15.56 40.61 - 80.2

V MAE 49.52 52.59 25.29 22.05 42.30 83.6 68.0
MOCOv3 47.81 54.44 20.31 16.96 40.11 83.2 76.7

Table 7.2: Probing results on the five tasks. VL models perform better on label
prediction tasks, while vision-only models perform better on dense prediction tasks.
Finetuning and linear probing results on ImageNet for each model (cited from original
papers) are also shown for reference.

MSCOCO PartImageNet
mAP Semantic Localization mIOU Semantic Localization

V+L
OFA 19.38 60.02 17.41 33.11 71.71 84.15
FLAVA 17.20 61.48 14.67 34.77 75.28 83.76
CLIP 15.56 68.24 13.25 40.61 80.21 86.80

V MAE 22.05 46.85 20.69 42.30 75.03 89.50
MOCOv3 16.96 49.80 15.08 40.11 76.18 86.08

Table 7.3: Detailed analysis of instance segmentation and part segmentation results.
We evaluate the segmentation results (standard metric mAP, mIOU) from two addi-
tional perspectives: semantics (F1 score for semantic class prediction) and localization
(mAP/mIOU for foreground/background segmentation). While V models are better
on the standard metrics, VL models are better when evaluated with semantics metrics.

checkpoint is reported.

7.4.2 Probing results

We probe the five models on each of the five probing tasks. We make sure that

the experiment settings, including model size, input size, training protocol and

data splits, are well aligned for every model in order to make fair comparisons.

The probing results are shown in Tab. 7.2. We also include the ImageNet

finetuning accuracy and linear probing accuracy of each model for reference,

because they are widely-used metrics for model evaluation. On each task, we

compare the VL models and V models. Note that the evaluation metric for
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each task is different (as in Tab. 7.1), performance on different tasks cannot be

compared and we only compare numbers in each column separately.

For object name prediction and attribute prediction, VL models consis-

tently perform better than V models. For object name prediction on Visual

Genome, VL models all achieve more than 51% accuracy while V models get

accuracy less than 50%; for attribute prediction on VAW, mAP for VL models

are higher than 61% while lower than 55% for V models. This suggests that

representations from VL models capture richer semantic information about

the objects in each image, which can be decoded using a simple linear layer.

In contrast, in V models the name and attribute information are not explicit

enough.

For the dense prediction tasks, MAE performs the best on all three tasks.

For part semantic segmentation on PartImageNet, MOCOv3 and CLIP also

get decent performance (> 40%) that is close to MAE (42%), while the other

two VL models are lower by a large margin (< 35%). For object detection on

MSCOCO, OFA gets close mAP (25.0) to MAE (25.3) while the performance of

the other three models are much lower; however, when it comes to instance

segmentation, the advantage of MAE is more clear, surpassing all the other

models with a margin larger than 2.7%.

Interestingly, comparing the object detection and instance segmentation

results on COCO, we find that the performance drops of V models are con-

sistently smaller than VL models, which indicates that V models learn better

localized representations. For example, for OFA, the mIOU for segmentation

is 5.7% (25.04-19.38) lower than that for detection; while the drop MAE and
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Ground-truth OFA FLAVA CLIP MAE MOCOv3
vision-and-language vision-only

Figure 7.2: Compared to vision-and-language models, vision-only models more
accurately predict the boundary of segmentation masks, but make mistakes in labeling
the regions.

MOCOv3 are smaller (3.2%, 3.3%). Because segmentation requires more local-

ized features than detection to find the boundary of objects, the performance

gap between detection and segmentation can be an indicator of the localized

information in the representations, considering those two tasks are based on

the same dataset. With the more-localized representations, the model can

better predict the mask boundary. Therefore, the smaller gap of vision-only

models suggests they learn more localized representations.

To further verify this finding, we next take a closer look into segmen-

tation results, which more clearly compare the semantics and localization

information in different models.

A closer look at the segmentation results. We evaluate the instance

segmentation results on COCO and semantic segmentation results on PartIm-

ageNet using two more metrics: (a) the label prediction metric, and (b) the

foreground-background segmentation metric, where (a) is an indicator for

semantics and (b) for localization. The motivation is that the segmentation
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metrics (mAP for instance segmentation, mIOU for semantic segmentation) re-

quire correctly predicting both the class label and the boundary, so the quality

of both determines the score. Therefore, we propose two additional metrics to

measure the two factors separately. For (a), for each image, we transform its

predicted segmentation map into label predictions, and evaluate the quality

using the multi-label prediction metric. In particular, we treat the appeared

classes in the segmentation map as positive labels and the others as negative;

then the label predictions are evaluated using the F1 score. F1 score is defined

as 2∗precision∗recall
precision+recall , where precision and recall are averaged over label classes.

For (b), we merge all the different object categories and process the segmenta-

tion map into binary labels, i.e., foreground and background, then report the

mIOU (for instance segmentation) or mAP (for semantic segmentation) of the

binary segmentation maps.

Tab. 7.3 shows the segmentation results on COCO and PartImageNet

evaluated using the above two metrics. Although MAE achieves the best

performance on both datasets, when looking at the semantic and localization

results, we find that its advantage mainly comes from better localization,

rather than semantics. In terms of semantics, VL models perform much better

than MAE. For example, on the MSCOCO dataset, VL models achieve F1

scores higher than 60, while MAE and MOCOv3 are lower than 50. The

results suggest that while MAE is better at finding the object boundaries when

predicting segmentation masks, VL models are better at predicting labels for

the objects.

In Fig. 7.2, we show several examples of the part segmentation results
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on PartImageNet. In the examples, MAE captures the object’s shape more

accurately, like the curly snake body, the shark’s small fin, and the quadruped

contour. However, MAE and MOCOv3 make more mistakes in labeling the

regions compared to VL models. For example, MAE wrongly predicts the

shark fin as a reptile foot, and the quadruped as a reptile; MOCOv3 confuses

the quadruped head and foot as the fish head and fins. Those examples more

explicitly compare the semantics and localization knowledge learned by VL

and V models.

Analysis on different attribute groups. We further decompose the at-

tribute prediction results into different attribute groups. In the VAW dataset,

attributes are categorized into 8 groups: action, texture, shape, size, color,

material, state, and others. The results are shown in Fig. 7.3. Interestingly,

despite the overall better results of VL models, we find that their advantages

differ in different groups. For example, the gap between VL and V models

in the “action” category is more significant than in the “texture” category.

Intuitively, “action” is less visually grounded then “texture” requires more

context and semantic information, on which VL models is better at, suggesting

that while vision-only ones are better at predicting highly visually grounded

local attributes (e.g., texture), VL models are better at more abstract ones.

7.4.3 More analysis

Findings of contrastive training. The results also show that contrastive mod-

els perform relatively better on localization for single-object images than
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Figure 7.3: A closer look at the attribute prediction results by separately evaluating
different types of attributes. The advantage of VL models is more significant in the
more abstract categories (e.g., action) than visually grounded categories (e.g., texture).

multi-object images. Among the five tasks, part segmentation on PartIma-

geNet dataset are based on single-object images from ImageNet, while the

other four tasks are based on COCO-style multi-object images. In Tab. 7.3,

comparing the contrastively trained models (CLIP, MOCOv3) and the models

trained with sequence modeling objectives (OFA, FLAVA, MAE), we find that

contrastive models perform relatively better on PartImageNet than MSCOCO.

For example, on PartImageNet, CLIP outperforms the other two VL models

(i.e., OFA and FLAVA) by a large margin (more than 6% mIOU); on MSCOCO,

it under-performs them. The semantic and localization evaluation suggests

that this difference is mainly caused by localization, e.g., the localization re-

sults of CLIP is much better than OFA and FLAVA on PartImageNet. A similar

observation can be obtained by comparing MOCOv3 and MAE: although

MOCOv3 underperforms MAE on both datasets, the gap is much smaller on
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PartImageNet than MSCOCO (2.2 vs. 5.1). Therefore, we suggest that the

localization ability of contrastive models is relatively stronger on single-object

images.

The effect of model size. To study the effect of model size, in Tab. 7.4,

we show the probing results with size base and large for MAE and OFA. For

MAE, a larger model size improves performance on all the probing tasks in

parallel for 1% to 2%. However, note that this improvement is less significant

compared to the big gaps between different model types. For OFA, except for

the marginal improvement in attribute prediction, the larger model size hurts

probing results on the other four tasks. The reason for the decrease is that the

OFAlarge is pretrained with a larger input image size (480*480) compared with

OFAbase model (384*384). Because we probe all models with the same image

size (224*224) for a fair comparison, the gap in image size between pretraining

and probing is more significant for OFAlarge. In summary, the effect of model

size is less considerable than other factors like model type or input image size.

obj. attr. det. seg. p-seg.

MAEbase 49.52 52.59 25.29 22.05 42.30
MAElarge 51.91 53.38 29.67 25.63 44.85

OFAbase 57.13 61.67 25.04 19.38 33.11
OFAlarge 52.33 62.01 21.23 16.51 32.04

Table 7.4: The influence of model size is less considerable than other factors like
model type.

The effect of downstream finetuning. Tab. 7.5 compares probing results

of models with and without finetuning on downstream tasks. For MAE, the

results are based on the base size; for OFA, the results are on large size, due
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to the availability of publicly released model checkpoints. For both models,

finetuning on image classification on ImageNet-1k and VQA on VQAv2 hurts

the probing performance to varying degrees (except for attribute prediction).

This indicates that while in pretraining, the model learns features that capture

various fine-grained information about the image, during finetuning towards

a specific task, only information useful for the task is kept and other informa-

tion is dropped. Moreover, compared with ImageNet finetuning, finetuning

on VQA leads to a much smaller performance decrease in probing results,

suggesting that the change in probing results depends on the nature of down-

stream tasks. In this case, VQA requires more fine-grained information about

objects, attributes, etc., resulting in a smaller drop than ImageNet finetuning.

obj. attr. det. seg. p-seg.

MAE 49.52 52.59 25.29 22.05 42.30
MAEIN1k 45.16 53.82 21.41 17.74 35.62

OFA 52.33 62.01 21.23 16.51 32.04
OFAIN1k 50.54 60.74 18.91 14.67 27.56
OFAVQA 51.42 63.40 19.01 14.22 28.34

Table 7.5: Probing results of models finetuned on downstream tasks. Finetuning
hurts the probing performance in most cases.

7.5 Conclusion

This work compares the visual representations in multimodal and unimodal

models by feature probing. By comparing three representative VL models and

two V models on five probing tasks, we find that VL models are stronger in

label prediction tasks, while vision-only models are better in dense prediction
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tasks. We hope our diagnostic findings serve as an empirical guidance for

future works in choosing models for different downstream tasks, as well as

exploring the role of language in visual representation learning.
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Part III

Image Captioning with Contrastive
Reasoning
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Chapter 8

Context-Aware Group Captioning
via Self-Attention and Contrastive
Features

While image captioning has progressed rapidly, existing works focus mainly

on describing single images. In this chapter, I introduce a new task, context-

aware group captioning, which aims to describe a group of target images in

the context of another group of related reference images. Context-aware group

captioning requires not only summarizing information from both the target

and reference image group but also contrasting between them. To solve this

problem, I propose a framework combining self-attention mechanism with

contrastive feature construction to effectively summarize common information

from each image group while capturing discriminative information between

them. To build the dataset for this task, I propose to group the images and

generate the group captions based on single image captions using scene graphs

matching. Our datasets are constructed on top of the public Conceptual

Captions dataset and the new Stock Captions dataset. Experiments on the two
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datasets show the effectiveness of our method on this new task. 1

8.1 Introduction

Context

Target group caption: woman with cowboy hat

Figure 8.1: Context-ware group captioning. Given a group of target images (shown
in orange boxes) and a group of reference images which provide the context (woman),
the goal is to generate a language description (woman with cowboy hat) that best
describes the target group while taking into account the context depicted by the
reference group.

Generating natural language descriptions from images, the task commonly

known as image captioning, has long been an important problem in computer

vision research [266, 267, 268]. It requires a high level of understanding from

both language and vision. Image captioning has attracted a lot of research

attention in recent years thanks to the advances in joint language-vision under-

standing models [50, 269, 270, 135]. While image captioning has progressed

rapidly, existing works mostly focus on describing individual images. There

1Related Datasets and code are released at https://lizw14.github.io/project/
groupcap.
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are practical scenarios in which captioning images in group is desirable. Ex-

amples include summarizing personal photo albums for social sharing or

understanding web user intention from their viewed or clicked images. More-

over, it is often the case that the target image group to be captioned naturally

belongs to a larger set that provides the context. For instance, in text-based

image retrieval applications, given a group of user-interested images and

other images returned by the search engine, we could predict the user hidden

preferences by contrasting the two groups and suggest a new search query

accordingly. Figure 8.1 shows an example of such scenario. Among all the

images returned by search query woman, the user can indicate his/her interest

in some of the images (in orange boxes). The objective is to recognize that the

user wants woman with cowboy hat and suggest the query accordingly.

Inspired by these real-world applications, we propose the novel problem

of context-aware group captioning: given a group of target images and a group

of reference images, our goal is to generate a language description that best

describes the target group in the context of the reference group. Compared to

the conventional setting of single-image based captioning, our new problem

poses two fundamental requirements. First, the captioning model needs to

effectively summarize the common properties of the image groups. Second,

the model needs to accurately describe the distinguishing content in the target

images compared to the reference images.

To address those requirements, we develop a learning-based framework

for context-aware image group captioning based on self-attention and con-

trastive feature construction. To obtain the feature that effectively summarizes

161



the visual information from the image group, we develop a group-wise feature

aggregation module based on self-attention. To effectively leverage the con-

trastive information between the target image group and the reference images,

we model the context information as the aggregated feature from the whole

set and subtract it from each image group feature to explicitly encourage the

resulting feature to capture the differentiating properties between the target

image group and the reference image group.

Training our models requires a large number of image groups with text

descriptions and associated reference image sets. In this chapter, we leverage

large-scale image caption datasets to construct the training data. In particular,

we build our annotations on top of Conceptual Captions [271], a recently

introduced large-scale image captioning dataset. We parse the single-image

caption into scene graphs and use the shared scene graphs of image groups to

generate the groups’ ground-truth captions. In addition, we apply the same

procedure on a large-scale image set collected from a photograph collection.

This dataset contains a large number of images with compact and precise

human-generated per-image descriptions. That results in our second dataset,

Stock Captions, which we plan to contribute to the research community to

encourage future research in this new problem.

The main contributions in this chapter are three-fold. First, we introduce

the problem of context-aware group captioning. This novel image captioning

setting can potentially be important for many real-world applications such as

automatic query suggestion in image retrieval. Second, we present a learning-

based approach which learns to aggregate image group visual feature for
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caption generation. Our framework combines the self-attention mechanism

with contrastive feature construction to effectively encode the image group

into a context-aware feature representation, which effectively summarizes

relevant common information in the groups while capturing discriminative

information between the target and context group. Third, we introduce two

large-scale datasets specifically for the context-aware group captioning prob-

lem. Experiments on the two datasets demonstrate that our model consistently

outperforms various baselines on the context-based image group captioning

task.

8.2 Related Work

Image captioning has emerged as an important research topic with a rich

literature in computer vision [266, 267, 268]. With the advances in deep neu-

ral networks, state-of-the-art image captioning approaches [50, 272, 273, 269,

274, 270, 239, 275] are based on the combination of convolutional neural

networks [276] and recurrent neural networks [102] (CNN-RNN) architec-

ture, where the visual features are extracted from the input image using

CNNs which is then decoded by RNNs to generate the language caption

describing the given image. Research in image captioning has progressed

rapidly in recent years. Novel network architectures [50, 277, 137, 278], loss

functions [279, 280, 281, 282, 270, 283], and advanced joint language-vision

modeling techniques [284, 285, 137, 135, 286, 287] have been developed to

enable more diverse and discriminative captioning results. Recent works have

also proposed to leverage the contextual and contrastive information from
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additional images to help generating more distinctive caption for the target

image [288, 289, 290, 291, 292] or comparative descriptions between image

pairs [293, 294, 295, 296]. Existing works, however, mostly focus on generating

captions for a single image. Our work, on the other hand, focuses on the novel

setting of context-based image group captioning which aims to describe a

target image group while leveraging the context of a larger pool of reference

images.

Referring expression generation [297, 298, 299] is a related problem to

image captioning, which aims to generate natural language descriptions for a

target object in an image. Contrastive modeling has been successfully applied

in state-of-the-art referring expression generation methods to describe the

target image region in contrast with other image regions. Yu et al. [300] use

relative location and feature difference to discriminate the target object. Mao et

al. [301] maximize the probability of generated expression describing a specific

region over other regions by Maximum Mutual Information training. While

referring expression generation considers the target region in contrast with

each negative region respectively, our problem requires contrastive context

modeling among and between image groups.

Attention mechanism has been successful in image captioning [277, 136,

137, 135, 287]. These works focused on applying visual attention to different

spatial regions at each text generation time step. More recently, attention

in transformer[24] and pretrained BERT[302] has been very successful in

natural language processing tasks. [303, 75, 304] adapts the idea of BERT to

vision and language tasks and showed improved performance on multiple
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sub-tasks. [305] bridges attention and non-local operator to capture long-

range dependency, which has been used in many computer vision tasks

[306, 307, 308, 309]. In our work, we apply attention over a group of images

and show its effectiveness for summarizing information in an image group.

Our setting is inspired by query suggestion [310, 311, 312, 313] in the

context of document retrieval systems. Query suggestion aims to predict the

expanded query given the previous query used by the users while taking

into account additional context such as search history [310, 311, 312] or user

interaction (e.g. clicked and skipped documents) [313]. We are inspired by

this task formulation and extend it to vision domain. Earlier works on query

suggestion in image search focus on forming visual descriptors to help obtain

better search results [314, 315] while the suggested text query is obtained solely

from the current user query without taking visual content understanding into

account. Our work, on the other hand, can potentially be applied to enable

query suggestion from images. In this work, we focus on the image captioning

aspect without relying on modeling user information and behavior as in

existing query suggestion works, thus making it applicable beyond retrieval

tasks.

8.3 Dataset

To train our models, we need a large-scale dataset where each data sample

contains a group of target images with an associated ground-truth description

and a larger group of reference images. The reference images need to be

relevant to target images while containing a larger variety of visual contents
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and thus provides context for describing target images. The description should

be both specific to the target group and conditioned on the reference group.

In this section, we first describe the intuition and method for dataset

creation, then provide details of our proposed datasets built on the Conceptual

Captions dataset and our proposed Stock Captions dataset.

8.3.1 Data Construction Method

We build our dataset on top of large-scale per-image captioning datasets by

leveraging the shared scene graphs among images, motivated by [289]. The

overall data generation process is shown in Figure 8.2.

Form the target and reference image groups. Images with shared scene

graphs compose an image group. More specifically, images with the same

(attribute)-object-relationship-(attribute)-object are chosen to compose the target

image group, while images with partially overlapping scene graphs with the

target group are chosen as the reference image group. For example, as in

Figure 8.2, images with the scene graph woman in chair are selected to form

the target group, while images containing woman are selected to form the

reference group paired with the target group. In this way, the reference group

contains a larger variety of contents (woman in any places or poses) while the

target group is more specific in terms of certain attributes (in chair).

Scene graph parsing for each image. In order to get the scene graphs for

each image to support our grouping process, we use a pretrained language

parser (improved upon [316]) to parse each ground-truth per-image caption

into a scene graph. We choose to parse the scene graph from image captions
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instead of using the annotated scene graph in Visual Genome dataset [79]

because our scene graph needs to focus on the most "salient" content in the

image. Since Visual Genome is densely annotated without the information

of which object is the main content of the image, scene graphs of small trivial

objects may dominate the grouping process while the main content is ignored.

This will produce very noisy data, potentially unsuitable for training our

models. On the other hand, while parsing errors may introduce noise, scene

graphs parsed out of image captions focus on the main objects because the

caption usually describes the most important contents in an image.

Generating the groundtruth caption for the image group. After getting

the target and reference groups using scene graph matching, the shared scene

graph among target images is flattened into text to serve as the ground truth

group description. For example, in Figure 8.2, the ground-truth group caption

is woman in chair. Other examples of ground-truth group captions include:

colorful bag on white background, girl in red, business team holding terrestrial globe,

woman with cowboy hat, etc.

Source datasets. To construct our datasets for group captioning, the per-

image captioning datasets need to be large-scale to provide enough image

groups. We build our group captioning datasets on top of two datasets: Con-

ceptual Captions dataset [271], which is the largest existing public image

captioning dataset, and Stock Captions dataset, which is our own large-scale

per-image captioning dataset characterized by precise and compact descrip-

tions. Details about construction on the two datasets are provided as follows.2

2For simplicity, in this paper, we call our newly constructed group captioning datasets by
the same name as their parent datasets: Conceptual Captions, and Stock Captions.
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reading
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Language 
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Target images: woman in chairReference images: woman

Figure 8.2: Dataset construction method. Our datasets are constructed from image
collections with per-image descriptions. A pretrained language parser is used to
parse each image caption into a scene graph. Then the images with shared scene
graph are grouped to form the target group. Images with scene graphs that partially
match the targets’ form the reference group.

8.3.2 Conceptual Captions

Conceptual Captions is a large-scale image captioning dataset containing 3.3

million image-caption pairs. (By the time we download the images through

the urls provided, only 2.8 million are valid.) Because the captions are au-

tomatically collected from alt-text enabled images on the web, some of the

captions are noisy and not natural. However, the high diversity of image

contents and large number of images makes Conceptual a suitable choice for

data generation using our method.

After sampling from 2.7 million images from Conceptual Captions, we

obtain around 200k samples with 1.6 million images included. Each sample
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contains 5 target images and 15 reference images. The images with rare scene

graphs that cannot be made into groups are not used. We manually cleaned the

sampled data to remove samples that are not meaningful. For example, target

group of portrait or woman and reference group of woman are not semantically

different so they are removed. We also cleaned the vocabulary to remove rare

words.

The 200k samples are split into test, validation and train splits, where these

three splits share the same image pool. While the validation and train splits

may contain samples of same group captions (because group captions are

usually short), we make sure that captions in test split do not overlap with

train split. More detailed statistics are provided in Table 8.1.

Original Per-Image Captioning
Conceptual Stock

Size 2766614 5785034
Avg Length 9.43 4.12
Context-aware Group Captioning

Conceptual Stock

Size 199442 146339
Train Split 175896 117829
Val Split 10000 10000
Test Split 13546 18510
# of images 1634523 1941370
Vocab Size 5811 2437
Avg Length 3.74 2.96

Table 8.1: Statistics of Conceptual Captions and Stock Captions, in terms of original
per-image captioning dataset and our group captioning dataset constructed on top of
per-image captions.
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8.3.3 Stock Captions

While the Conceptual dataset excels in image diversity, we found that its

captions are often long and sometime noisy. Motivated by the query sugges-

tion application where the suggested search queries are usually short and

compact, we propose to construct the dataset on a new image captioning

dataset named Stock Captions. Stock Captions is a large-scale image caption-

ing dataset collected in text-to-image retrieval setting. Stock Captions dataset

is characterized by very precise, short and compact phrases. Many of the

captions in this dataset are more attribute-like short image titles, e.g. "colorful

bags", "happy couple on a beach", "Spaghetti with dried chilli and bacon", etc.

After grouping and filtering the 5.8 million raw images, we get 1.9 million

images, grouped into 1.5 million data samples for the Stock Captions dataset.

The dataset sampling and split details are similar to Conceptual.(Table 8.1).

8.3.4 User Study for Dataset Comparisons

To test the quality of our data and compare our two datasets, we conduct a

user study by randomly selecting 500 data samples (250 from each dataset)

and ask 25 users to give a 0-5 score for each sample, with 5 being the highest

and 0 being the lowest.

To better compare the two datasets, we ask the users to give strict scores.

A caption needs to be precise, discriminative and natural to be considered

good. Many captions with the score of 0 and 1 are semantically good, but

are unnatural. The distribution of scores is shown in Figure 8.3. As expected,

in overall quality, the Stock Captions data scores significantly higher as it is
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Figure 8.3: Distribution of human-given scores for our two constructed datasets.
Dataset constructed on Stock Captions gets higher human scores.

based on compact and precise human-generated captions. However, several

users do note that the captions in the Conceptual Captions dataset seems to

be more specific, and “interesting”.

8.4 Method

In this section, we explore methods to address the two main challenges in our

proposed problem: a) feature aggregation, i.e. how to summarize the images

within one image group, and (b) group contrasting, i.e., how to figure out the

difference between two image groups. By comparing different methods, our

goal is not only finding the best performing models, but also drawing insights

into the characteristics of the task, and hopefully, setting the focus for future

exploration in this problem.

To begin the section, we first formalize the problem settings in Section 8.4.1.
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Figure 8.4: Context-aware group captioning with self-attention and contrastive fea-
tures. Image features are aggregated with self-attention to get the group represen-
tation for each image group. Then the group representation is concatenated with
contrastive representation to compose the input to LSTM decoder, which finally
generates context-aware caption for the target image group.

In the subsequent sub-sections, we describe our method explorations path

starting with a simple baseline. We then gradually introduce more computa-

tionally specialized modules. For each module, we describe our intuition and

back them up with quantitative results and visual illustrations.

8.4.1 Problem Setting

Given a group of nt target images and a group of nr reference images, our task

is to generate a description D =< ŵ1, ..., ŵl > to describe the target image

group in context of the reference group. Here ŵi denotes the word in the

sentence and l is sentence length, which varies for each data sample. In our

setting, nt = 5, nr = 15.

Each image is represented by a 2048-d feature extracted using the ResNet50

network [241] (after pool5 layer), pretrained on ImageNet [229]. The input of

our model are the target features Φt = [ϕ1
t , ..., ϕnt

t ] and the reference features

Φr = [ϕ1
r , ..., ϕnr

r ], where ϕi ∈ R2048. We use Φ to denote a list of features,
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while a single feature is denoted as ϕ.

While we believe that more detailed features (e.g. spatial features with-

out mean-pooling, or object-level features) may improve performance, they

increase the computational complexity, and by extension, the training time

to an unacceptably high level in our initial testing. Thus, we simply use the

mean-pooled feature vector.

8.4.2 Baseline: feature averaging and concatenation

From the problem setting above, one intuitive approach would be to sum-

marize the target and reference features by averaging, and concatenating

them to create the final feature for description generation. The process can be

formalized as follows.

We compute the target group feature ϕ′
t and the reference group feature ϕ′

r

by averaging the features in each group:

ϕ′
t =

1
nt

∑
i∈1..nt

ϕti ϕ′
r =

1
nr

∑
i∈1..nr

ϕtr

Following standard captioning pipeline, we then use the concatenation

of the two group features as input to LSTM to predict the context-aware

descriptions. We use LSTM-RNN [102] to generate the caption in an auto-

regressive manner. Denoting the output of the LSTM module at time step t as

ht, we have the equations for decoding:
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h1 = [ϕ′
t, ϕ′

r]

ht = LSTM(ht−1, ŵt−1)

ŵt ∼ softmax(ht).

Finally, we follow standard beam search process to generate the captions.

This decoding architecture is used in all of our subsequent model variants.

8.4.3 Feature aggregation with self attention

While the average-pooling method used for feature aggregation above is intu-

itive, it treats all image features equally. We note that many groups of images

have prominent members that encapsulate the joint information of the whole

groups (Figure 8.5). We argue that the group summarizing process could be

improved if we can identify these prominent features/images. Motivated by

that observation, we propose to use the transformer architecture [24] for this

task. The transformer relies on a grid of attention between the elements of the

set to learn a better representation. Intuitively, by learning the self-attention

grid, the model can detect the prominent features as each element in the set

can “vote” for the importance of the other elements through the attention

mechanism. In the subsequent analysis, we show that, in our task, the self-

attention gird indeed puts a lot more weights to the prominent images. The

core computations of our transformer-based architecture can be summarized

as follows.3

The first step is calculating the contextualized features using self-attention

3We only describe the core computation steps of the self-attention due to space constraint
and to improve clarity. More details can be found in the original paper [24]. We also release
our implementation if accepted.
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mechanism. Given the input features Φ; three different sets of features: queries

Q, keys K and values V are calculated using a linear transformation:

Q = WQΦ + bQ

K = WKΦ + bK

V = WVΦ + bV

Then the self-attention grid is calculated by a scaled dot product between

Q and K (the scaling factor d is the dimension of the vectors in Q and K). The

self-attention layer uses this attention grid and the value matrix V to compute

its outputs.4

Attention (Q, K, V) = softmax
(︃

QKT
√

d

)︃
V

The self-attention output is then coupled with the residual signal to create

the contextualized features Φ′.

V ′ = V + Attention(Q, K, V)

Φ′ = V ′ + max
(︁
0, V ′W1 + b1

)︁
W2 + b2

From this point, we denote the process of transforming from the original

features set Φ to the contextualized feature set Φ′ as Φ′ = F(Φ). With this

formulation, we have the contextualized set of features Φ′
t and Φ′

r:

Φ′
t = Fst(Φt) Φ′

r = Fsr(Φr)

We tried both sharing and not-sharing weights of Fst and Fsr, and found that

4We don’t use the multi-head attention in this work, as in our preliminary experiments,
the multi-head attention provides no performance gain compared to a single head.
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sharing weights lead to slightly better performance. This is intuitive as the

task of grouping target images are not different from the task of grouping

reference images, and thus, the grouping model can share the same set of

weights.

In our experiments, the self-attention architecture provides a significant

boost in performance compared to the average-pooling variant.

8.4.4 Group contrasting with contrastive features

The second major challenge in our proposed problem is the image group

contrasting. With the aforementioned self-attention mechanism, we have

good representations for the target and reference groups. The most intuitive

way to learn the difference between the two features is either concatenation

(which is implemented in our baseline) or feature subtraction.

We argue that, to learn the difference between two groups of images, we

first need to capture their similarity. Our hypothesis is that, when we identify

the similarity between all the images, we can “remove” this similarity portion

from the two features to deduce more discriminative representation. This

process is formalized as follows.

The first step is learning the common information ϕ′
c between all the images.

We do that by applying the same self-attention mechanism described above to

all the images.

Φ′
c = Fa([Φt; Φr])

ϕ′
c =

1
nt + nr

∑ Φ′
c
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Then the joint information is “removed” from the group features ϕ′
t and ϕ′

r

by subtraction to generate the contrastive/residual feature ϕd
t and ϕd

r .

ϕd
t = ϕ′

t − ϕ′
c ϕd

r = ϕ′
r − ϕ′

c

The contrastive features ϕd
t and ϕd

r are concatenated with the group features

ϕ′
t and ϕ′

r, which are then fed into LSTM-RNN to generate captions. In our

subsequent analysis, we show that the contrastive features indeed focus on

the difference between two image groups.

8.5 Experiments

WordAcc CIDER WER BLEU1 BLEU2 METEOR ROUGE
Conceptual

Per-Img. Caption 5.4638 0.4671 2.6587 0.1267 0.0272 0.0868 0.1466
Average 36.7329 1.9591 1.6859 0.4932 0.2782 0.3956 0.4964
SA 37.9916 2.1446 1.6423 0.5175 0.3103 0.4224 0.5203
Average+Contrast 37.8450 2.0315 1.6534 0.5007 0.2935 0.4057 0.5027
SA+Contrast 39.4496 2.2917 1.5806 0.5380 0.3313 0.4405 0.5352

Stock
Per-Img. Caption 5.8931 0.3889 1.8021 0.1445 0.0359 0.0975 0.1620
Average 37.9428 1.9034 1.1430 0.5334 0.2429 0.4042 0.5318
SA 39.2410 2.1023 1.0829 0.5537 0.2696 0.4243 0.5515
Average+Contrast 39.1985 2.0278 1.0956 0.5397 0.2632 0.4139 0.5375
SA+Contrast 40.6113 2.1561 1.0529 0.5601 0.2796 0.4332 0.5572

Table 8.2: Group captioning performance on the Conceptual Captions and Stock
Captions dataset.

In this section, we first describe our evaluation results on the two datasets.

Then we provide quantitative analysis and visualization to expose the effec-

tiveness of different components of our model.
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(a) (b)

(a)

(b)

Figure 8.5: Visualization of 5 × 5 self-attention weight matrix for target image group.
Each row sums up to 1. For group (a) woman with balloon, image 2 and image 3 are
representative. For group (b) yoga on beach, image5 is representative. Images with
more distinguishable features become the representative images of a group and get
higher attention weights.

8.5.1 Group Captioning Performance

We evaluate our context-aware group captioning method on both Conceptual

Captions and Stock Captions datasets. The same hyper-parameters are used

for all experiments on each dataset. On the Stock Captions dataset, we use

batch size 512 and initial learning rate 1 × 10−4. On the Conceptual Captions

dataset, we use batch size 512 and learning rate 5 × 10−5. We train the model

for 100 epochs with Adam optimizer[317] on both datasets.

We measure the captioning performance on the test splits in both datasets

using a variety of captioning metrics. Specifically, we consider the standard

metrics widely used in image captioning literature, including BLEU[318],
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Model WordAcc CIDER BLEU2 METEOR ROUGE
Tgt0 + Ref15 24.4709 1.0399 0.0614 0.2341 0.3965
Tgt1 + Ref15 28.7479 1.3447 0.1292 0.2938 0.4415
Tgt3 + Ref15 34.6574 1.7641 0.2098 0.3698 0.5048
Tgt5 + Ref0 31.8061 1.6767 0.2095 0.3475 0.4552
Tgt5 + Ref15 40.6113 2.1561 0.2796 0.4332 0.5572

Table 8.3: Performance with varying the number of target and reference images.
(evaluated on Stock Captions dataset)

CIDER[319], METEOR[320] and ROUGE[321]. In addition, since group de-

scriptions are often short and compact, we put more emphasis on single word

accuracy compared to traditional image captioning. We thus consider two

additional metrics, Word-by-word accuracy(WordAcc), word error rate(WER),

that specifically assess word-based accuracy5. We also note that as some group

descriptions may contain as few as two words, we do not consider BLEU3

and BLEU4 scores which evaluates tri-grams and 4-grams.

The captioning performance on the testing set of Conceptual Captions

and Stock Captions datasets are reported in Table 8.2. To compare with a

simple baseline, we caption each image individually and summarize them

using our dataset building method. The result (Per-Img. Caption) shows

that the group captioning problem cannot be solved by simply summarizing

per-image captions. More details are shown in supplementary materials.

Compared to aggregating features by averaging (Average, as in Section 8.4.2),

self-attention (SA) is more effective in computing group representation and

leads to significant performance improvement. On top of feature aggregation,

contrastive feature is critical for the model to generate context-aware caption

5Here we consider position-specific word accuracy. For example, prediction woman with
straw hat with ground truth woman with cowboy hat has accuracy 75%, while prediction woman
with hat has accuracy 50%.
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which emphasizes the difference of target image group on context of reference

group. Applying contrastive features (Contrast) to either feature aggregation

methods leads to performance boost (Average+Contrast, SA+Contrast). To

this end, our full model, which combines self-attention for group aggregation

and contrastive feature for group comparing performs best, achieving 39.4%

WordAcc on Conceptual Captions and 40.6% on Stock Captions.

8.5.2 Discussion

Ground Truth: woman lifting weight
Our Prediction: woman working with dumbbell

Prediction without Context: fitness woman

(a)

Ground Truth: baby on white background
Our Prediction: baby on white background
Prediction without Context: baby toddler

(b)

Figure 8.6: Qualitative prediction examples on Conceptual Captions (a) and Stock
Captions (b) datasets. In each example, images in first row (in orange boxes) are
target images while second to fourth rows (in blue boxes) are reference images. Our
model can effectively summarize relevant information in the image groups during
captioning. Our model also effectively takes discriminative information between the
target and reference group into account during captioning to predict accurate group
captioning results.

Effectiveness of self-attention on feature aggregation. To better understand

the effectiveness of self-attention, in Figure 8.5, we visualize the 5 × 5 self-

attention weight matrix between 5 target images. The i-th row of the attention

matrix represents the attention weights from i-th image to each of the 5 images,

which sum up to 1. In (a), images with larger and centered balloons (Image2

and Image3) gets higher attention. In (b), image5 where the woman doing
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yoga is larger and easier to recognize gets higher attention. In both examples,

images with more recognizable features get higher attention weights and thus

contribute more to the aggregated group representation.

Contrastive + Group Group Contrastive
woman with cowboy hat woman country with cowboy straw hat
white girl girl white rule white and...
woman in boxing glove woman is go in boxing...

Table 8.4: Analysis of contrastive representation. Column Contrastive + Group is
the prediction of our full model. Column Group and column Contrastive are the
predictions when only the group or only the contrastive representation is fed into the
decoder respectively. Blue text denotes the common part while red text denotes the
contrastive part.

Importance of multiple target and reference images. To investigate the

effectiveness of giving multiple images in each group, we vary the number

of target and reference images. Results are shown in Table 8.3. Fewer target

or reference images results in performance decline, which indicates that a

larger number of images is more informational for the model to get better

descriptions. We also qualitatively study the importance of the reference

image group. Examples are shown in Figure 8.6. The examples indicate that

when not giving reference group the predictions tend to be more generic and

less discriminative.

Contrastive representation versus group representation. Table 8.4 shows

example descriptions when only the group representations or only the con-

trastive representations are fed into LSTM decoder. Although the model does

not treat the features independently and removing the features might break

the grammar structure of the caption, looking at the lexicons returned by the
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two variants, we can clearly observe the focus of two features. When the

decoder uses only the group representations, the predictions emphasize the

common part of two image groups. On the other hand, when the decoder

only uses the contrastive representations, the predictions emphasize the dif-

ference between two image groups. This reveals that the group representation

encodes similarity information, while the contrastive representation encodes

discriminative information.

Robustness to noise images. To investigate the model’s robustness to noise in

the image group, we tried adding random unrelated images to the target group.

Figure 8.7 shows performances of models trained and tested with different

number (0-4) of noise images on Conceptual Captions dataset. Training with

more noise increases robustness of the model but hinder performance when

tested with no noise. The model shows robustness to small noise. Qualitatively,

when testing with small (1 or 2) noise (trained with 0 noise), the caption loses

details, e.g. woman in red dress becomes woman in dress. The generated

caption is broken when the noise is severe, which is reasonable.

8.6 Conclusion

In this chapter, I present the novel context-aware group captioning task, where

the objective is to describe a target image group in contrast to a reference

image group. To explore this problem, we introduce two large scale datasets,

Conceptual Captions and Stock Captions respectively, both of which will

be released for future research. We also propose a framework with self-

attention for grouping the images and contrastive representation for capturing
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Figure 8.7: Performance change on Conceptual Captions dataset when trained and
tested with 0-4 random images in the target group. Training with more noise increases
robustness of the model but hinder performance when tested with no noise.

discriminative features. We show the effectiveness of our proposed model

both quantitatively and qualitatively on our datasets. We also thoroughly

analyze the behavior of our models to provide insights into this new problem.
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Chapter 9

Discussion and Conclusion

9.1 Summary

In this dissertation, I present a total of seven research projects, all of which

focus on reasoning with vision and language.

In Part I, I study the visual question answering task, from the perspective

of model diagnosis. Chapter 2 perturbs the model input by feature shuffling

and shows that current VQA models are surprising not robust to changes

in features of irrelevant visual elements. Chapter 3 benchmarks the domain

robustness of existing VQA models by introducing a new synthetic benchmark

named Super-CLEVR that is controllable over various factors. Chapter 4 fur-

ther extends Super-CLEVR with 3D-aware questions, and show that without

explicit 3D understanding, current models cannot correctly answer questions

about parts, poses, and occlusions.

In Part II, I dive deeper into compositional visual reasoning models, propos-

ing various techniques to enhance the models for better generalization on

real data. Chapter 5 analyzes the challenges in generalizing the synthetically
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successful compositional models to real-world images, and addresses the

challenges by calibration of concepts and operations. Chapter 6 improves the

recent LLM-based compositional reasoning system with introducing verifica-

tion modules, which examine and correct the errors in the step-wise reasoning

results. Chapter 7 studies the visual representations in foundation models,

from the perspective of feature probing in semantics and localization tasks,

which aims to serve as a guidebook for choosing visual foundation models.

In Part III, I explore a new task, contrastive group captioning, and show the

challenges in the reasoning procedure, comparing a group of images instead

of single images.

9.2 Limitations

In this section, I discuss the limitations of my works in this thesis. If I were to

repeat the work, here are a few things that I would be focusing more on:

9.2.1 Generalization of compositional methods.

Despite the stronger generalization ability towards domain shifts as shown

in Chapter 3, generalization means more than that. Here I show a few cases.

First, the current symbolic methods as in Chapter 5 and Chapter 3 is limited

to a closed set of operations that are supported by hand-designed modules,

thus cannot handle open-domain questions. For example, currently there is

no operation to handle “why” questions like “why is the man holding an

umbrella?”. Second, some questions can hardly be decomposed into isolated

operations, e.g. “which person in this image is different from others?”, thus
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cannot be handled by current symbolic methods following an decompose-

then-execute paradigm. Third, current compositional models do not have a

holistic understanding of the image and text together, which results in failures

on ambiguous questions. For example, the ambiguity in question “where is

the white wine bottle?”, which can refer to the bottle that holds white wine, or

the white bottle that holds wine, can be resolved by looking at the image, but

is hard for a text-only question parser. Fourth and further, current models are

not well-calibrated, so it is hard to know what they don’t know. With these

limitations, there are few works that solve more challenging datasets, like

VQAv2 [10] with compositional models.

The lack of generalization ability significantly hinders the applications

of compositional methods, as the flexibility to handle free-form open-world

questions is essential for successful models. This is probably one of the reasons

why we prefer to use Chat-GPT over many domain-specific methods in our

daily life. More efforts could be made to solve the generalization issue, not

by investing time and labours in designing modules to support more types of

operations, but by redesigning the system to allow flexible components in the

model.

9.2.2 Free-form VQA versus closed-form VQA.

In this thesis, I study VQA and image captioning as two seperate tasks, where

VQA serves as a discriminative probe that queries the model precisely while

image captioning serves as a generative task. A better perspective is to unify

the two tasks and study free-form VQA, where the answer is a free-form
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description instead of a class from a closed set of candidate answers. Free-

form VQA is not only more challenging from a research perspective, but also

more flexible to applied into more applications. However, there is still a long

way to go for compositional models to solve free-form VQA. While I put

efforts in compositional models for discriminative understanding, enforcing

their generative capacity remains an open problem.

9.2.3 Compositional versus non-compositional methods

So far, I show the advantages of compositional methods like robustness and

interpretability, as well as disadvantages like performance and flexibility, in

comparison with non-compositional end-to-end methods. Given that each

type of methods has pros and cons, a next-step solution is to embrace the

power of both the rigid but reliable symbolic modules and the flexible yet

black-box end-to-end methods, in order to achieve the best of both worlds.

Solutions like model distillation and model ensemble like mixture-of-expert,

could be explored.

9.3 Future Works

I will introduce future works for both evaluating and learning of the visual

reasoning system and what the next steps could be, in the current big model

age.
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9.3.1 Systematic evaluation of visual reasoning.

Performance on proxy tasks has long been used as the evaluation protocol to

represent model performance. However, this protocol might be misleading,

for two reasons.

On one hand, due to the complexity of the tasks, the overall accuracy does

not necessarily reflect the models’ capacity along distinct axis. Actually, visual

reasoning is a high-order ability that requires a broad coverage of various

factors, e.g., understanding of visual contexts, visual commonsense knowl-

edge, human intention, intuitive physics, mathematical calculation, etc. For

example, given an image of a man carrying an umbrella and the challenging

question “what is this umbrella for?”, the model needs to correctly recognize

the objects like man and umbrella, understand the weather (rainy or sunny)

from the lighting or background of the image, utilize the visual commonsense

knowledge of the possible usage of an umbrella, and finally answer whether

the umbrella is used for sunshine or rain. With only the correctness of the

final answer, it is hard to understand, thus diagnose the bottleneck of the

model. How to define the different factors, thus systematically evaluate on

them, remains an open topic. Recent benchmarks

On the other hand, due to possible bias and shortcuts in the data, a high

performance on the proxy tasks does not necessarily reflect the model’s true

understanding ability. As discovered by the success of adversarial attacks

of neural networks, which shows the vulnerability of the seemingly well-

performed models, the good average performance on standard benchmarks

does not reflect the worst-case performance. When the testing data lies out
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of training distribution, a well-performed model can be significantly fooled

and make incorrect predictions. Therefore, a more systematic testing proto-

col, which “push the model hard” and evaluate the worst-case performance

beyond the average performance, should be studied.

9.3.2 Joint learning of vision and language

Most recent works plug vision into pretrained large language models in a

post-hoc manner [322, 176, 323], where the language model is pre-learned

using text-only data, and then the visual features is adapted and fed into the

pretrained model afterwards. However, I believe that the joint learning of

multiple modalities, like vision and language, offers mutual benefits. In [232],

we show that multimodal models learn better visual commonsense knowledge

than text-only models; in Chapter 7, I show preliminary analysis that language

enhances the semantics encoded in visual representations. Inspired by these

findings, I believed that an improved joint learning of multiple modalities will

enhance the current large pretrained models.

However, there are challenges in the joint learning of vision and language

considering the intrinsic differences between the two domains. While texts

are discrete and naturally tokenized into words, images and videos are contin-

uous natural signals. It is noticable that recent efforts explores tokenziation

in visual domain, e.g., VQ-VAE [264] and VQ-GAN [265] explore discrete tok-

enization of images, slot attention [324] explores unsupervised object-centric

representation learning. Despite the progress, the success of transformers in

NLP hasn’t yet been fully replicated in the vision field. While recent works
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show promising results using transformer backbone for tasks like classifica-

tion, detection and segmentation, it is still open whether these models can

successfully scale like in NLP.

9.3.3 Compositionality in large pretrained models.

Recently, LLMs and VLMs demonstrate impressive promise in the multi-

modal field. Evidences, like chain-of-thought [325] and program-of-thought

[326], have shown that compositionality appears as an emergent ability as the

pretrained models grow larger and larger.

As a next step, it is worth investigating how to better utilize the emergent

compositionality to further improve the models and to better interpret and

control the models. For example, can we distill the compositionality into

smaller models? Can we utilize LLMs to build better compositional models?

Can we apply better controllability over the models predictions by making

use of its intermediate predictions? In Chapter 6, I introduce my preliminary

effort in this direction. I am glad to see that there are recent research works

going along this way [327, 328].
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